dramaticlly commented on code in PR #9724: URL: https://github.com/apache/iceberg/pull/9724#discussion_r1809950337
########## spark/v3.5/spark/src/main/java/org/apache/iceberg/spark/actions/RemoveDanglingDeletesSparkAction.java: ########## @@ -0,0 +1,179 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ +package org.apache.iceberg.spark.actions; + +import static org.apache.spark.sql.functions.col; +import static org.apache.spark.sql.functions.min; + +import java.util.Collections; +import java.util.List; +import java.util.stream.Collectors; +import org.apache.iceberg.DataFile; +import org.apache.iceberg.DeleteFile; +import org.apache.iceberg.MetadataTableType; +import org.apache.iceberg.Partitioning; +import org.apache.iceberg.RewriteFiles; +import org.apache.iceberg.Table; +import org.apache.iceberg.actions.ImmutableRemoveDanglingDeleteFiles; +import org.apache.iceberg.actions.RemoveDanglingDeleteFiles; +import org.apache.iceberg.spark.JobGroupInfo; +import org.apache.iceberg.spark.SparkDeleteFile; +import org.apache.iceberg.types.Types; +import org.apache.spark.sql.Column; +import org.apache.spark.sql.Dataset; +import org.apache.spark.sql.Row; +import org.apache.spark.sql.SparkSession; +import org.apache.spark.sql.types.StructType; +import org.slf4j.Logger; +import org.slf4j.LoggerFactory; + +/** + * An action that removes dangling delete files from the current snapshot. A delete file is dangling + * if its deletes no longer applies to any live data files. + * + * <p>The following dangling delete files are removed: + * + * <ul> + * <li>Position delete files with a data sequence number less than that of any data file in the + * same partition + * <li>Equality delete files with a data sequence number less than or equal to that of any data + * file in the same partition + * </ul> + */ +class RemoveDanglingDeletesSparkAction + extends BaseSnapshotUpdateSparkAction<RemoveDanglingDeletesSparkAction> + implements RemoveDanglingDeleteFiles { + + private static final Logger LOG = LoggerFactory.getLogger(RemoveDanglingDeletesSparkAction.class); + private final Table table; + + protected RemoveDanglingDeletesSparkAction(SparkSession spark, Table table) { + super(spark); + this.table = table; + } + + @Override + protected RemoveDanglingDeletesSparkAction self() { + return this; + } + + public Result execute() { + if (table.specs().size() == 1 && table.spec().isUnpartitioned()) { + // ManifestFilterManager already performs this table-wide delete on each commit + return ImmutableRemoveDanglingDeleteFiles.Result.builder() + .removedDeleteFiles(Collections.emptyList()) + .build(); + } + + String desc = String.format("Removing dangling delete files in %s", table.name()); + JobGroupInfo info = newJobGroupInfo("REMOVE-DELETES", desc); + return withJobGroupInfo(info, this::doExecute); + } + + Result doExecute() { + RewriteFiles rewriteFiles = table.newRewrite(); + List<DeleteFile> danglingDeletes = findDanglingDeletes(); + for (DeleteFile deleteFile : danglingDeletes) { + LOG.debug("Removing dangling delete file {}", deleteFile.path()); + rewriteFiles.deleteFile(deleteFile); + } + + if (!danglingDeletes.isEmpty()) { + commit(rewriteFiles); + } + + return ImmutableRemoveDanglingDeleteFiles.Result.builder() + .removedDeleteFiles(danglingDeletes) + .build(); + } + + /** + * Dangling delete files can be identified with following steps + * + * <ol> + * <li>Group data files by partition keys and find the minimum data sequence number in each + * group. + * <li>Left outer join delete files with partition-grouped data files on partition keys. + * <li>Find dangling deletes by comparing each delete file's sequence number to its partition's + * minimum data sequence number. + * <li>Collect results row to driver and use {@link SparkDeleteFile SparkDeleteFile} to wrap + * rows to valid delete files + * </ol> + */ + private List<DeleteFile> findDanglingDeletes() { + Dataset<Row> minSequenceNumberByPartition = + loadMetadataTable(table, MetadataTableType.ENTRIES) + // find live data files + .filter("data_file.content == 0 AND status < 2") + .selectExpr( + "data_file.partition as partition", + "data_file.spec_id as spec_id", + "sequence_number") + .groupBy("partition", "spec_id") + .agg(min("sequence_number")) + .toDF("grouped_partition", "grouped_spec_id", "min_data_sequence_number"); + + Dataset<Row> deleteEntries = + loadMetadataTable(table, MetadataTableType.ENTRIES) + // find live delete files + .filter("data_file.content != 0 AND status < 2"); + + Column joinOnPartition = + deleteEntries + .col("data_file.spec_id") + .equalTo(minSequenceNumberByPartition.col("grouped_spec_id")) + .and( + deleteEntries + .col("data_file.partition") + .equalTo(minSequenceNumberByPartition.col("grouped_partition"))); + + Column filterOnDanglingDeletes = + col("min_data_sequence_number") + // delete fies without any data files in partition + .isNull() + // position delete files without any applicable data files in partition + .or( + col("data_file.content") + .equalTo("1") + .and(col("sequence_number").$less(col("min_data_sequence_number")))) + // equality delete files without any applicable data files in the partition + .or( + col("data_file.content") + .equalTo("2") + .and(col("sequence_number").$less$eq(col("min_data_sequence_number")))); + + Dataset<Row> danglingDeletes = + deleteEntries + .join(minSequenceNumberByPartition, joinOnPartition, "left") + .filter(filterOnDanglingDeletes) + .select("data_file.*"); + return danglingDeletes.collectAsList().stream() + // map on driver because SparkDeleteFile is not serializable + .map(row -> deleteFileWrapper(danglingDeletes.schema(), row)) + .collect(Collectors.toList()); + } + + private DeleteFile deleteFileWrapper(StructType sparkFileType, Row row) { + int specId = row.getInt(row.fieldIndex("spec_id")); + Types.StructType combinedFileType = DataFile.getType(Partitioning.partitionType(table)); Review Comment: I see where the confusion is from, this [`DataFile.getType(partitionType)`](https://github.com/apache/iceberg/blob/main/api/src/main/java/org/apache/iceberg/DataFile.java#L108-L128) returns a struct type of a file with provided partition type. Here it's trying to project from (file with unioned partition) to (file with desired partition spec) for SparkDeleteFile -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For additional commands, e-mail: issues-h...@iceberg.apache.org