jurossiar commented on issue #9960: URL: https://github.com/apache/iceberg/issues/9960#issuecomment-2324860967
I'm wondering if you have any update on this issue? -> Previous comments: https://github.com/apache/iceberg/issues/9960#issuecomment-2197375635 I've just tried using: spark-version: 3.5 scala-version: 2.12 iceberg-version: 1.6.1 and still get the same errors. Steps: Create the table: ``` %%sparksql CREATE TABLE julian.tmp_julian ( user_id STRING, access_type STRING, open boolean ) USING ICEBERG LOCATION 's3a://<bucket>/tables/julian/tmp_julian' ``` add row: ``` %%sparksql insert into julian.tmp_julian values ('a','B', false) ``` Update schema ``` %%sparksql update julian.tmp_julian set open = (access_type == "B") ``` Error: ``` { "name": "Py4JJavaError", "message": "An error occurred while calling o52.sql. : org.apache.spark.SparkUnsupportedOperationException: UPDATE TABLE is not supported temporarily. \tat org.apache.spark.sql.errors.QueryExecutionErrors$.ddlUnsupportedTemporarilyError(QueryExecutionErrors.scala:1109) \tat org.apache.spark.sql.execution.SparkStrategies$BasicOperators$.apply(SparkStrategies.scala:896) \tat org.apache.spark.sql.catalyst.planning.QueryPlanner.$anonfun$plan$1(QueryPlanner.scala:63) \tat scala.collection.Iterator$$anon$11.nextCur(Iterator.scala:486) \tat scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:492) \tat scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:491) \tat org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:93) \tat org.apache.spark.sql.execution.SparkStrategies.plan(SparkStrategies.scala:70) \tat org.apache.spark.sql.catalyst.planning.QueryPlanner.$anonfun$plan$3(QueryPlanner.scala:78) \tat scala.collection.TraversableOnce$folder$1.apply(TraversableOnce.scala:196) \tat scala.collection.TraversableOnce$folder$1.apply(TraversableOnce.scala:194) \tat scala.collection.Iterator.foreach(Iterator.scala:943) \tat scala.collection.Iterator.foreach$(Iterator.scala:943) \tat scala.collection.AbstractIterator.foreach(Iterator.scala:1431) \tat scala.collection.TraversableOnce.foldLeft(TraversableOnce.scala:199) \tat scala.collection.TraversableOnce.foldLeft$(TraversableOnce.scala:192) \tat scala.collection.AbstractIterator.foldLeft(Iterator.scala:1431) \tat org.apache.spark.sql.catalyst.planning.QueryPlanner.$anonfun$plan$2(QueryPlanner.scala:75) \tat scala.collection.Iterator$$anon$11.nextCur(Iterator.scala:486) \tat scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:492) \tat org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:93) \tat org.apache.spark.sql.execution.SparkStrategies.plan(SparkStrategies.scala:70) \tat org.apache.spark.sql.execution.QueryExecution$.createSparkPlan(QueryExecution.scala:476) \tat org.apache.spark.sql.execution.QueryExecution.$anonfun$sparkPlan$1(QueryExecution.scala:162) \tat org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:111) \tat org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$2(QueryExecution.scala:202) \tat org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:526) \tat org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:202) \tat org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827) \tat org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:201) \tat org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:162) \tat org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:155) \tat org.apache.spark.sql.execution.QueryExecution.$anonfun$executedPlan$1(QueryExecution.scala:175) \tat org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:111) \tat org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$2(QueryExecution.scala:202) \tat org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:526) \tat org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:202) \tat org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827) \tat org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:201) \tat org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:175) \tat org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:168) \tat org.apache.spark.sql.execution.QueryExecution.simpleString(QueryExecution.scala:221) \tat org.apache.spark.sql.execution.QueryExecution.org$apache$spark$sql$execution$QueryExecution$$explainString(QueryExecution.scala:266) \tat org.apache.spark.sql.execution.QueryExecution.explainString(QueryExecution.scala:235) \tat org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:112) \tat org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:195) \tat org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:103) \tat org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827) \tat org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65) \tat org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:98) \tat org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:94) \tat org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:512) \tat org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:104) \tat org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:512) \tat org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:31) \tat org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267) \tat org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263) \tat org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:31) \tat org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:31) \tat org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:488) \tat org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:94) \tat org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:81) \tat org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:79) \tat org.apache.spark.sql.Dataset.<init>(Dataset.scala:219) \tat org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:99) \tat org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827) \tat org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:96) \tat org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:640) \tat org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827) \tat org.apache.spark.sql.SparkSession.sql(SparkSession.scala:630) \tat org.apache.spark.sql.SparkSession.sql(SparkSession.scala:662) \tat java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method) \tat java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:77) \tat java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) \tat java.base/java.lang.reflect.Method.invoke(Method.java:568) \tat py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) \tat py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374) \tat py4j.Gateway.invoke(Gateway.java:282) \tat py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) \tat py4j.commands.CallCommand.execute(CallCommand.java:79) \tat py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182) \tat py4j.ClientServerConnection.run(ClientServerConnection.java:106) \tat java.base/java.lang.Thread.run(Thread.java:840) ", "stack": "--------------------------------------------------------------------------- Py4JJavaError Traceback (most recent call last) Cell In[9], line 1 ----> 1 get_ipython().run_cell_magic('sparksql', '', 'update julian.tmp_julian set open = (access_type == \"B\")\ ') File ~/miniconda3/envs/dmf-library-dev/lib/python3.10/site-packages/IPython/core/interactiveshell.py:2541, in InteractiveShell.run_cell_magic(self, magic_name, line, cell) 2539 with self.builtin_trap: 2540 args = (magic_arg_s, cell) -> 2541 result = fn(*args, **kwargs) 2543 # The code below prevents the output from being displayed 2544 # when using magics with decorator @output_can_be_silenced 2545 # when the last Python token in the expression is a ';'. 2546 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False): File ~/miniconda3/envs/dmf-library-dev/lib/python3.10/site-packages/sparksql_magic/sparksql.py:40, in SparkSql.sparksql(self, line, cell, local_ns) 37 print(\"active spark session is not found\") 38 return ---> 40 df = spark.sql(bind_variables(cell, user_ns)) 41 if args.cache or args.eager: 42 print('cache dataframe with %s load' % ('eager' if args.eager else 'lazy')) File ~/miniconda3/envs/dmf-library-dev/lib/python3.10/site-packages/pyspark/sql/session.py:1440, in SparkSession.sql(self, sqlQuery, args, **kwargs) 1438 try: 1439 litArgs = {k: _to_java_column(lit(v)) for k, v in (args or {}).items()} -> 1440 return DataFrame(self._jsparkSession.sql(sqlQuery, litArgs), self) 1441 finally: 1442 if len(kwargs) > 0: File ~/miniconda3/envs/dmf-library-dev/lib/python3.10/site-packages/py4j/java_gateway.py:1322, in JavaMember.__call__(self, *args) 1316 command = proto.CALL_COMMAND_NAME +\\ 1317 self.command_header +\\ 1318 args_command +\\ 1319 proto.END_COMMAND_PART 1321 answer = self.gateway_client.send_command(command) -> 1322 return_value = get_return_value( 1323 answer, self.gateway_client, self.target_id, self.name) 1325 for temp_arg in temp_args: 1326 if hasattr(temp_arg, \"_detach\"): File ~/miniconda3/envs/dmf-library-dev/lib/python3.10/site-packages/pyspark/errors/exceptions/captured.py:169, in capture_sql_exception.<locals>.deco(*a, **kw) 167 def deco(*a: Any, **kw: Any) -> Any: 168 try: --> 169 return f(*a, **kw) 170 except Py4JJavaError as e: 171 converted = convert_exception(e.java_exception) File ~/miniconda3/envs/dmf-library-dev/lib/python3.10/site-packages/py4j/protocol.py:326, in get_return_value(answer, gateway_client, target_id, name) 324 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client) 325 if answer[1] == REFERENCE_TYPE: --> 326 raise Py4JJavaError( 327 \"An error occurred while calling {0}{1}{2}.\ \". 328 format(target_id, \".\", name), value) 329 else: 330 raise Py4JError( 331 \"An error occurred while calling {0}{1}{2}. Trace:\ {3}\ \". 332 format(target_id, \".\", name, value)) Py4JJavaError: An error occurred while calling o52.sql. : org.apache.spark.SparkUnsupportedOperationException: UPDATE TABLE is not supported temporarily. \tat org.apache.spark.sql.errors.QueryExecutionErrors$.ddlUnsupportedTemporarilyError(QueryExecutionErrors.scala:1109) \tat org.apache.spark.sql.execution.SparkStrategies$BasicOperators$.apply(SparkStrategies.scala:896) \tat org.apache.spark.sql.catalyst.planning.QueryPlanner.$anonfun$plan$1(QueryPlanner.scala:63) \tat scala.collection.Iterator$$anon$11.nextCur(Iterator.scala:486) \tat scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:492) \tat scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:491) \tat org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:93) \tat org.apache.spark.sql.execution.SparkStrategies.plan(SparkStrategies.scala:70) \tat org.apache.spark.sql.catalyst.planning.QueryPlanner.$anonfun$plan$3(QueryPlanner.scala:78) \tat scala.collection.TraversableOnce$folder$1.apply(TraversableOnce.scala:196) \tat scala.collection.TraversableOnce$folder$1.apply(TraversableOnce.scala:194) \tat scala.collection.Iterator.foreach(Iterator.scala:943) \tat scala.collection.Iterator.foreach$(Iterator.scala:943) \tat scala.collection.AbstractIterator.foreach(Iterator.scala:1431) \tat scala.collection.TraversableOnce.foldLeft(TraversableOnce.scala:199) \tat scala.collection.TraversableOnce.foldLeft$(TraversableOnce.scala:192) \tat scala.collection.AbstractIterator.foldLeft(Iterator.scala:1431) \tat org.apache.spark.sql.catalyst.planning.QueryPlanner.$anonfun$plan$2(QueryPlanner.scala:75) \tat scala.collection.Iterator$$anon$11.nextCur(Iterator.scala:486) \tat scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:492) \tat org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:93) \tat org.apache.spark.sql.execution.SparkStrategies.plan(SparkStrategies.scala:70) \tat org.apache.spark.sql.execution.QueryExecution$.createSparkPlan(QueryExecution.scala:476) \tat org.apache.spark.sql.execution.QueryExecution.$anonfun$sparkPlan$1(QueryExecution.scala:162) \tat org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:111) \tat org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$2(QueryExecution.scala:202) \tat org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:526) \tat org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:202) \tat org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827) \tat org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:201) \tat org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:162) \tat org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:155) \tat org.apache.spark.sql.execution.QueryExecution.$anonfun$executedPlan$1(QueryExecution.scala:175) \tat org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:111) \tat org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$2(QueryExecution.scala:202) \tat org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:526) \tat org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:202) \tat org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827) \tat org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:201) \tat org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:175) \tat org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:168) \tat org.apache.spark.sql.execution.QueryExecution.simpleString(QueryExecution.scala:221) \tat org.apache.spark.sql.execution.QueryExecution.org$apache$spark$sql$execution$QueryExecution$$explainString(QueryExecution.scala:266) \tat org.apache.spark.sql.execution.QueryExecution.explainString(QueryExecution.scala:235) \tat org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:112) \tat org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:195) \tat org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:103) \tat org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827) \tat org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65) \tat org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:98) \tat org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:94) \tat org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:512) \tat org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:104) \tat org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:512) \tat org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:31) \tat org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267) \tat org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263) \tat org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:31) \tat org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:31) \tat org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:488) \tat org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:94) \tat org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:81) \tat org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:79) \tat org.apache.spark.sql.Dataset.<init>(Dataset.scala:219) \tat org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:99) \tat org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827) \tat org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:96) \tat org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:640) \tat org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827) \tat org.apache.spark.sql.SparkSession.sql(SparkSession.scala:630) \tat org.apache.spark.sql.SparkSession.sql(SparkSession.scala:662) \tat java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method) \tat java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:77) \tat java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) \tat java.base/java.lang.reflect.Method.invoke(Method.java:568) \tat py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) \tat py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374) \tat py4j.Gateway.invoke(Gateway.java:282) \tat py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) \tat py4j.commands.CallCommand.execute(CallCommand.java:79) \tat py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182) \tat py4j.ClientServerConnection.run(ClientServerConnection.java:106) \tat java.base/java.lang.Thread.run(Thread.java:840) " } ``` But works with spark 3.4. -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For additional commands, e-mail: issues-h...@iceberg.apache.org