bikeshedder opened a new issue, #1084: URL: https://github.com/apache/iceberg-python/issues/1084
### Apache Iceberg version None ### Please describe the bug 🐞 ## Summary I'm currently trying to migrate a couple of dataframes with a custom hive-like storage scheme to Iceberg. After a lot of fiddling I managed to load the dataframes from an Azure storage, create the table in the Iceberg catalog (currently using sqlite + local fs) and append fragments from the Parquet dataset. As soon as adding a thread pool I always run into concurrency issues. ## Errors I get either of the following two error messages: ``` CommitFailedException: Requirement failed: branch main has changed: expected id 7548527194257629329, found 8136001929437813453 ``` or ``` CommitFailedException: Requirement failed: branch main was created concurrently ``` ## Sources I use `Dataset.get_fragments` and insert the data into an iceberg table with identical partitioning. I can work around this error by using a GIL (global iceberg lock, pun intended.) which is just a `threading.Lock()` that ensures every `load_table()` + `table.append` happens atomically. But that kills almost all performance gains there could be made. Also I plan on using this in some Celery runners . So using a `threading.Lock()` is no option in the future anyways. <details> <summary>azure_import.py</summary> ```python #!/bin/env -S poetry run python from concurrent.futures import ThreadPoolExecutor, as_completed import pyarrow as pa import pyarrow.dataset as pd from adlfs import AzureBlobFileSystem from azure.identity import DefaultAzureCredential from azure.storage.blob import BlobServiceClient from pyarrow.dataset import HivePartitioning from pyiceberg.catalog import Catalog from pyiceberg.catalog.sql import SqlCatalog from pyiceberg.io.pyarrow import pyarrow_to_schema from pyiceberg.partitioning import PartitionField, PartitionSpec from pyiceberg.table.name_mapping import MappedField, NameMapping from pyiceberg.transforms import IdentityTransform import settings class AzureStorage: def __init__(self): credential = DefaultAzureCredential() blob_service_client = BlobServiceClient( settings.AZURE_BLOB_URL, credential ) self.container_client = blob_service_client.get_container_client( settings.AZURE_BLOB_CONTAINER ) # The AzureBlobFileSystem doesn't cleanly shutdown and currently # always raises an expection at the end of this program. See: # https://github.com/fsspec/adlfs/issues/431 self.abfs = AzureBlobFileSystem( account_name=settings.AZURE_BLOB_ACCOUNT_NAME, credential=credential, ) def list_tables(self): return self.container_client.walk_blobs( settings.AZURE_LIVE_PATH, delimiter="/" ) def load_dataset(self, table_name) -> pd.Dataset: name = "/".join((settings.AZURE_LIVE_PATH.rstrip("/"), table_name)) dataset = pd.dataset( "/".join([settings.AZURE_LIVE_CONTAINER, name]), format="parquet", filesystem=self.abfs, partitioning=HivePartitioning( pa.schema( [ ("dataset", pa.string()), ("flavor", pa.string()), ] ) ), ) return dataset def create_iceberg_catalog(): catalog = SqlCatalog( "default", **{ "uri": settings.ICEBERG_DATABASE_URI, "warehouse": settings.ICEBERG_WAREHOUSE, }, ) return catalog def download_table(catalog: Catalog, table_name: str, ds: pd.Dataset): name_mapping = NameMapping( root=[ MappedField(field_id=field_id, names=[field.name]) for field_id, field in enumerate(ds.schema, 1) ] ) schema = pyarrow_to_schema(ds.schema, name_mapping=name_mapping) assert isinstance(ds.partitioning, HivePartitioning), ds.partitioning partitioning_spec = PartitionSpec( *( PartitionField( source_id=name_mapping.find(field.name).field_id, field_id=-1, transform=IdentityTransform(), name=field.name, ) for field in ds.partitioning.schema ) ) table = catalog.create_table( f"{settings.ICEBERG_NAMESPACE}.{table_name}", schema=schema, partition_spec=partitioning_spec, ) fragments = list(ds.get_fragments()) with ThreadPoolExecutor(8) as executor: futures = [ executor.submit( download_fragment, table.identifier, fragment, ) for fragment in fragments ] for future in as_completed(futures): try: future.result() except Exception as e: executor.shutdown(wait=False, cancel_futures=True) raise e from None def download_fragment( table_identifier: str, fragment, ): catalog = create_iceberg_catalog() partition_keys = pd.get_partition_keys(fragment.partition_expression) fragment_table = fragment.to_table() for k, v in partition_keys.items(): fragment_table = fragment_table.append_column( pa.field(k, pa.string(), nullable=False), pa.repeat(pa.scalar(v), fragment_table.num_rows), ) table = catalog.load_table(table_identifier) table.append(fragment_table) def import_data(storage: AzureStorage, catalog, table_name): dataset = storage.load_dataset(table_name) download_table(catalog, table_name, dataset) def main(): catalog = create_iceberg_catalog() catalog.create_namespace_if_not_exists(settings.ICEBERG_NAMESPACE) storage = AzureStorage() for table_name in storage.list_tables(): import_data(storage, catalog, table_name) if __name__ == "__main__": main() ``` </details> <details> <summary>pyproject.toml</summary> ```toml [tool.poetry] name = "iceberg-azure-importer" version = "0.1.0" description = "" authors = ["Michael P. Jung <michael.j...@terreon.de>"] package-mode = false [tool.poetry.dependencies] python = "^3.12" pyiceberg = { extras = ["sql-postgres"], version = "^0.7.1" } azure-identity = "^1.17.1" adlfs = "^2024" psutil = "^6.0.0" pyarrow = "^17.0.0" fsspec = "^2024" ``` </detail> -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For additional commands, e-mail: issues-h...@iceberg.apache.org