kevinjqliu commented on code in PR #1043: URL: https://github.com/apache/iceberg-python/pull/1043#discussion_r1717681434
########## pyiceberg/io/pyarrow.py: ########## @@ -1304,6 +1305,195 @@ def _read_all_delete_files(fs: FileSystem, tasks: Iterable[FileScanTask]) -> Dic return deletes_per_file +def _fs_from_file_path(file_path: str, io: FileIO) -> FileSystem: + scheme, netloc, _ = _parse_location(file_path) + if isinstance(io, PyArrowFileIO): + return io.fs_by_scheme(scheme, netloc) + else: + try: + from pyiceberg.io.fsspec import FsspecFileIO + + if isinstance(io, FsspecFileIO): + from pyarrow.fs import PyFileSystem + + return PyFileSystem(FSSpecHandler(io.get_fs(scheme))) + else: + raise ValueError(f"Expected PyArrowFileIO or FsspecFileIO, got: {io}") + except ModuleNotFoundError as e: + # When FsSpec is not installed + raise ValueError(f"Expected PyArrowFileIO or FsspecFileIO, got: {io}") from e + + +class PyArrowProjector: + _table_metadata: TableMetadata + _io: FileIO + _fs: FileSystem + _projected_schema: Schema + _bound_row_filter: BooleanExpression + _case_sensitive: bool + _limit: Optional[int] + """Projects an Iceberg Table to a PyArrow construct. + + Attributes: + _table_metadata: Current table metadata of the Iceberg table + _io: PyIceberg FileIO implementation from which to fetch the io properties + _fs: PyArrow FileSystem to use to read the files + _projected_schema: Iceberg Schema to project onto the data files + _bound_row_filter: Schema bound row expression to filter the data with + _case_sensitive: Case sensitivity when looking up column names + _limit: Limit the number of records. + """ + + def __init__( + self, + table_metadata: TableMetadata, + io: FileIO, + projected_schema: Schema, + row_filter: BooleanExpression, + case_sensitive: bool = True, + limit: Optional[int] = None, + ) -> None: + self._table_metadata = table_metadata + self._io = io + self._fs = _fs_from_file_path(table_metadata.location, io) # TODO: use different FileSystem per file + self._projected_schema = projected_schema + self._bound_row_filter = bind(table_metadata.schema(), row_filter, case_sensitive=case_sensitive) + self._case_sensitive = case_sensitive + self._limit = limit + + @property + def _use_large_types(self) -> bool: + """Whether to represent data as large arrow types. + + Defaults to True. + """ + return property_as_bool(self._io.properties, PYARROW_USE_LARGE_TYPES_ON_READ, True) + + @property + def _projected_field_ids(self) -> Set[int]: + """Set of field IDs that should be projected from the data files.""" + return { + id + for id in self._projected_schema.field_ids + if not isinstance(self._projected_schema.find_type(id), (MapType, ListType)) + }.union(extract_field_ids(self._bound_row_filter)) + + def project_table(self, tasks: Iterable[FileScanTask]) -> pa.Table: + """Project the Iceberg table to a pa.Table. + + Returns a pa.Table with data from the Iceberg table by resolving the + right columns that match the current table schema. Only data that + matches the provided row_filter expression is returned. + + Args: + tasks: FileScanTasks representing the data files and delete files to read from. + + Returns: + A PyArrow table. Result is capped at the limit, if specified. + + Raises: + ResolveError: When a required field cannot be found in the file + ValueError: When a field type in the file cannot be projected to the schema type + """ + deletes_per_file = _read_all_delete_files(self._fs, tasks) + executor = ExecutorFactory.get_or_create() + + def _project_table_from_scan_task(task: FileScanTask) -> pa.Table: + batches = list(self._project_batches_from_scan_tasks_and_deletes([task], deletes_per_file)) + if len(batches) > 0: + return pa.Table.from_batches(batches) + else: + return None + + futures = [ + executor.submit( + _project_table_from_scan_task, + task, + ) + for task in tasks + ] + total_row_count = 0 + # for consistent ordering, we need to maintain future order + futures_index = {f: i for i, f in enumerate(futures)} + completed_futures: SortedList[Future[pa.Table]] = SortedList(iterable=[], key=lambda f: futures_index[f]) + for future in concurrent.futures.as_completed(futures): + completed_futures.add(future) + if table_result := future.result(): + total_row_count += len(table_result) + # stop early if limit is satisfied + if self._limit is not None and total_row_count >= self._limit: + break + + # by now, we've either completed all tasks or satisfied the limit + if self._limit is not None: + _ = [f.cancel() for f in futures if not f.done()] + + tables = [f.result() for f in completed_futures if f.result()] + + if len(tables) < 1: + return pa.Table.from_batches([], schema=schema_to_pyarrow(self._projected_schema, include_field_ids=False)) + + result = pa.concat_tables(tables, promote_options="permissive") Review Comment: this is something im curious about, and probably need to look into how PyArrow handles its internal data structure. Right now, `_project_table_from_scan_task` returns a `pa.Table` object by transforming batches to table ``` batches = list(self._project_batches_from_scan_tasks_and_deletes([task], deletes_per_file)) if len(batches) > 0: return pa.Table.from_batches(batches) ``` We then parallelize this and end up with multiple `pa.Table`s before joining all the tables together ``` result = pa.concat_tables(tables, promote_options="permissive") ``` So two operations here * record_batches to table * joining tables into a single table Is it more performant to return record batches from `_project_table_from_scan_task` and then join the record batches to the table? -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For additional commands, e-mail: issues-h...@iceberg.apache.org