panda403 opened a new issue, #10557: URL: https://github.com/apache/iceberg/issues/10557
### Query engine use spark with iceberg ### Question here is my iceberg table root |-- partition_time: long (nullable = true) |-- base: struct (nullable = true) | |-- report_time_ms: long (nullable = true) | |-- dev_info: struct (nullable = true) | | |-- env: string (nullable = true) | | |-- user: string (nullable = true) | | |-- pwd: string (nullable = true) | |-- com_info: struct (nullable = true) ........... i want to update colum base.dev_info.env's value to 'prod',when i use df.withColumn("new_env", F.when(F.col("type") === 1, "").otherwise(F.col("base.dev_info.env"))) the new_env's value is correct but when i use df.withColumn("base.dev_info.env", F.when(F.col("type") === 1, "").otherwise(F.col("base.dev_info.env"))) , the base.dev_info.env has no change it seems spark cant identify the nested column, how to update nested column value with spark? -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For additional commands, e-mail: issues-h...@iceberg.apache.org