
The M4 Macro Processor

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

M4 is a macro processor available onUNIX†
andGCOS. Its primary use has been as a front end for Ratfor for those cases where parameterless macros are not ad-
equately powerful. It has also been used for languages as disparate as C and Cobol. M4 is particularly suited for
functional languages like Fortran, PL/I and C since macros are specified in a functional notation.
M4 provides features seldom found even in much larger macro processors, including
•arguments
•condition testing
•arithmetic capabilities
•string and substring functions
•file manipulation
This paper is a user’s manual for M4.

July 1, 1977

†UNIX is a Trademark of Bell Laboratories.

-- --

The M4 Macro Processor

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction
A macro processor is a useful way to enhance a
programming language, to make it more palatable
or more readable, or to tailor it to a particular
application. The#define statement in C and the
analogousdefine in Ratfor are examples of the
basic facility provided by any macro processor —
replacement of text by other text.
The M4 macro processor is an extension of a
macro processor called M3 which was written by
D. M. Ritchie for the AP-3 minicomputer; M3
was in turn based on a macro processor imple-
mented for [1]. Readers unfamiliar with the basic
ideas of macro processing may wish to read some
of the discussion there.
M4 is a suitable front end for Ratfor and C, and
has also been used successfully with Cobol.
Besides the straightforward replacement of one
string of text by another, it provides macros with
arguments, conditional macro expansion, arith-
metic, file manipulation, and some specialized
string processing functions.
The basic operation of M4 is to copy its input to
its output. As the input is read, however, each
alphanumeric ‘‘token’’ (that is, string of letters
and digits) is checked. If it is the name of a
macro, then the name of the macro is replaced by
its defining text, and the resulting string is pushed
back onto the input to be rescanned. Macros may
be called with arguments, in which case the argu-
ments are collected and substituted into the right
places in the defining text before it is rescanned.
M4 provides a collection of about twenty built-in
macros which perform various useful operations;
in addition, the user can define new macros.
Built-ins and user-defined macros work exactly
the same way, except that some of the built-in
macros have side effects on the state of the pro-
cess.

Usage
On UNIX, use

m4 [files]

Each argument file is processed in order; if there
are no arguments, or if an argument is `−’, the
standard input is read at that point. The processed
text is written on the standard output, which may
be captured for subsequent processing with

m4 [files] >outputfile

On GCOS, usage is identical, but the program is
called./m4.

Defining Macros
The primary built-in function of M4 isdefine,
which is used to define new macros. The input

define(name, stuff)

causes the stringname to be defined asstuff. All
subsequent occurrences ofname will be replaced
by stuff. name must be alphanumeric and must
begin with a letter (the underscore counts as a
letter). stuff is any text that contains balanced
parentheses; it may stretch over multiple lines.
Thus, as a typical example,

define(N, 100)
...
if (i > N)

definesN to be 100, and uses this ``symbolic con-
stant’’ in a laterif statement.
The left parenthesis must immediately follow the
word define, to signal thatdefine has arguments.
If a macro or built-in name is not followed imme-
diately by `(’, it is assumed to have no arguments.
This is the situation forN above; it is actually a
macro with no arguments, and thus when it is
used there need be no (...) following it.
You should also notice that a macro name is only
recognized as such if it appears surrounded by

-- --

- 2 -

non-alphanumerics. For example, in

define(N, 100)
...
if (NNN > 100)

the variableNNN is absolutely unrelated to the
defined macroN, even though it contains a lot of
N’s.
Things may be defined in terms of other things.
For example,

define(N, 100)
define(M, N)

defines both M and N to be 100.
What happens ifN is redefined? Or, to say it
another way, isM defined asN or as 100? In M4,
the latter is true —M is 100, so even ifN subse-
quently changes,M does not.
This behavior arises because M4 expands macro
names into their defining text as soon as it possi-
bly can. Here, that means that when the stringN
is seen as the arguments ofdefine are being col-
lected, it is immediately replaced by 100; it’s just
as if you had said

define(M, 100)

in the first place.
If this isn’t what you really want, there are two
ways out of it. The first, which is specific to this
situation, is to interchange the order of the defini-
tions:

define(M, N)
define(N, 100)

Now M is defined to be the stringN, so when you
ask forM later, you’ll always get the value ofN
at that time (because theM will be replaced byN
which will be replaced by 100).

Quoting
The more general solution is to delay the expan-
sion of the arguments ofdefine by quoting them.
Any text surrounded by the single quotes ` and ´
is not expanded immediately, but has the quotes
stripped off. If you say

define(N, 100)
define(M, `N´)

the quotes around theN are stripped off as the
argument is being collected, but they hav e served
their purpose, andM is defined as the stringN,
not 100. The general rule is that M4 always strips
off one level of single quotes whenever it evalu-
ates something. This is true even outside of

macros. If you want the worddefine to appear in
the output, you have to quote it in the input, as in

`define´ = 1;

As another instance of the same thing, which is a
bit more surprising, consider redefiningN:

define(N, 100)
...
define(N, 200)

Perhaps regrettably, theN in the second definition
is evaluated as soon as it’s seen; that is, it is
replaced by 100, so it’s as if you had written

define(100, 200)

This statement is ignored by M4, since you can
only define things that look like names, but it
obviously doesn’t hav e the effect you wanted. To
really redefineN, you must delay the evaluation
by quoting:

define(N, 100)
...
define(`N´, 200)

In M4, it is often wise to quote the first argument
of a macro.
If ` and ´ are not convenient for some reason, the
quote characters can be changed with the built-in
changequote:

changequote([,])

makes the new quote characters the left and right
brackets. You can restore the original characters
with just

changequote

There are two additional built-ins related to
define. undefine removes the definition of some
macro or built-in:

undefine(`N´)

removes the definition ofN. (Why are the quotes
absolutely necessary?) Built-ins can be removed
with undefine, as in

undefine(`define´)

but once you remove one, you can never get it
back.
The built-in ifdef provides a way to determine if
a macro is currently defined. In particular, M4
has pre-defined the namesunix and gcoson the
corresponding systems, so you can tell which one
you’re using:

ifdef(`unix´, `define(wordsize,16)´)

−− −−

- 3 -

ifdef(`gcos´, `define(wordsize,36)´)

makes a definition appropriate for the particular
machine. Don’t forget the quotes!
ifdef actually permits three arguments; if the
name is undefined, the value ofifdef is then the
third argument, as in

ifdef(`unix´, on UNIX, not on UNIX)

Arguments
So far we have discussed the simplest form of
macro processing — replacing one string by
another (fixed) string. User-defined macros may
also have arguments, so different invocations can
have different results. Within the replacement
text for a macro (the second argument of its
define) any occurrence of$n will be replaced by
thenth argument when the macro is actually used.
Thus, the macrobump, defined as

define(bump, $1 = $1 + 1)

generates code to increment its argument by 1:

bump(x)

is

x = x + 1

A macro can have as many arguments as you
want, but only the first nine are accessible,
through$1 to $9. (The macro name itself is$0,
although that is less commonly used.) Arguments
that are not supplied are replaced by null strings,
so we can define a macrocat which simply con-
catenates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus

cat(x, y, z)

is equivalent to

xyz

$4 through $9 are null, since no corresponding
arguments were provided.
Leading unquoted blanks, tabs, or newlines that
occur during argument collection are discarded.
All other white space is retained. Thus

define(a, b c)

definesa to beb c.
Arguments are separated by commas, but paren-
theses are counted properly, so a comma ``pro-
tected’’ by parentheses does not terminate an
argument. That is, in

define(a, (b,c))

there are only two arguments; the second is liter-
ally (b,c). And of course a bare comma or paren-
thesis can be inserted by quoting it.

Arithmetic Built-ins
M4 provides two built-in functions for doing
arithmetic on integers (only). The simplest is
incr , which increments its numeric argument by
1. Thus to handle the common programming situ-
ation where you want a variable to be defined as
``one more than N’’, write

define(N, 100)
define(N1, `incr(N)´)

ThenN1 is defined as one more than the current
value ofN.
The more general mechanism for arithmetic is a
built-in calledev al, which is capable of arbitrary
arithmetic on integers. It provides the operators
(in decreasing order of precedence)

unary + and−
∗∗ or ˆ (exponentiation)
∗ / % (modulus)
+ −
== != < <= > >=
! (not)
& or && (logical and)
or (logical or)

Parentheses may be used to group operations
where needed. All the operands of an expression
given to ev al must ultimately be numeric. The
numeric value of a true relation (like 1>0) is 1,
and false is 0. The precision inev al is 32 bits on
UNIX and 36 bits onGCOS.
As a simple example, suppose we wantM to be
2∗∗N+1. Then

define(N, 3)
define(M, `eval(2∗∗N+1)´)

As a matter of principle, it is advisable to quote
the defining text for a macro unless it is very sim-
ple indeed (say just a number); it usually gives the
result you want, and is a good habit to get into.

File Manipulation
You can include a new file in the input at any
time by the built-in functioninclude:

include(filename)

inserts the contents offilename in place of the
include command. The contents of the file is
often a set of definitions. The value ofinclude

-- --

- 4 -

(that is, its replacement text) is the contents of the
file; this can be captured in definitions, etc.
It is a fatal error if the file named ininclude can-
not be accessed. To get some control over this sit-
uation, the alternate formsinclude can be used;
sinclude (``silent include’’) says nothing and con-
tinues if it can’t access the file.
It is also possible to divert the output of M4 to
temporary files during processing, and output the
collected material upon command. M4 maintains
nine of these diversions, numbered 1 through 9.
If you say

divert(n)

all subsequent output is put onto the end of a tem-
porary file referred to asn. Div erting to this file
is stopped by anotherdivert command; in partic-
ular, divert or divert(0) resumes the normal out-
put process.
Diverted text is normally output all at once at the
end of processing, with the diversions output in
numeric order. It is possible, however, to bring
back diversions at any time, that is, to append
them to the current diversion.

undivert

brings back all diversions in numeric order, and
undivert with arguments brings back the selected
diversions in the order given. The act of undivert-
ing discards the diverted stuff, as does diverting
into a diversion whose number is not between 0
and 9 inclusive.
The value ofundivert is not the diverted stuff.
Furthermore, the diverted material isnot res-
canned for macros.
The built-in divnum returns the number of the
currently active div ersion. This is zero during
normal processing.

System Command
You can run any program in the local operating
system with thesyscmdbuilt-in. For example,

syscmd(date)

on UNIX runs the date command. Normally
syscmdwould be used to create a file for a subse-
quentinclude.
To facilitate making unique file names, the built-
in maketemp is provided, with specifications
identical to the system functionmktemp:a string
of XXXXX in the argument is replaced by the
process id of the current process.

Conditionals
There is a built-in calledifelsewhich enables you
to perform arbitrary conditional testing. In the
simplest form,

ifelse(a, b, c, d)

compares the two stringsa and b. If these are
identical, ifelse returns the stringc; otherwise it
returnsd. Thus we might define a macro called
comparewhich compares two strings and returns
``yes’’ or ``no’’ if they are the same or different.

define(compare, `ifelse($1, $2, yes, no)´)

Note the quotes, which prevent too-early evalua-
tion of ifelse.
If the fourth argument is missing, it is treated as
empty.
ifelse can actually have any number of argu-
ments, and thus provides a limited form of multi-
way decision capability. In the input

ifelse(a, b, c, d, e, f, g)

if the stringa matches the stringb, the result isc.
Otherwise, ifd is the same ase, the result isf.
Otherwise the result isg. If the final argument is
omitted, the result is null, so

ifelse(a, b, c)

is c if a matchesb, and null otherwise.

String Manipulation
The built-in len returns the length of the string
that makes up its argument. Thus

len(abcdef)

is 6, andlen((a,b)) is 5.
The built-in substr can be used to produce sub-
strings of strings.substr(s, i, n) returns the sub-
string of s that starts at theith position (origin
zero), and isn characters long. Ifn is omitted,
the rest of the string is returned, so

substr(`now is the time´, 1)

is

ow is the time

If i or n are out of range, various sensible things
happen.
index(s1, s2)returns the index (position) ins1
where the strings2 occurs, or −1 if it doesn’t
occur. As withsubstr, the origin for strings is 0.
The built-in translit performs character translit-
eration.

translit(s, f, t)

−− −−

- 5 -

modifiess by replacing any character found inf
by the corresponding character oft. That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits.
If t is shorter thanf, characters which don’t hav e
an entry int are deleted; as a limiting case, ift is
not present at all, characters fromf are deleted
from s. So

translit(s, aeiou)

deletes vowels froms.
There is also a built-in calleddnl which deletes
all characters that follow it up to and including
the next newline; it is useful mainly for throwing
aw ay empty lines that otherwise tend to clutter up
M4 output. For example, if you say

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not part of
the definition, so it is copied into the output,
where it may not be wanted. If you adddnl to
each of these lines, the newlines will disappear.
Another way to achieve this, due to J. E. Weyth-
man, is

divert(−1)
define(...)
...

divert

Printing
The built-inerrprint writes its arguments out on
the standard error file. Thus you can say

errprint(`fatal error´)

dumpdef is a debugging aid which dumps the
current definitions of defined terms. If there are
no arguments, you get everything; otherwise you
get the ones you name as arguments. Don’t forget
to quote the names!

Summary of Built-ins
Each entry is preceded by the page number
where it is described.

3 changequote(L, R)
1 define(name, replacement)
4 div ert(number)
4 divnum
5 dnl
5 dumpdef(`name´, `name´, ...)
5 errprint(s, s, ...)

4 eval(numeric expression)
3 ifdef(`name´, this if true, this if false)
5 ifelse(a, b, c, d)
4 include(file)
3 incr(number)
5 index(s1, s2)
5 len(string)
4 maketemp(...XXXXX...)
4 sinclude(file)
5 substr(string, position, number)
4 syscmd(s)
5 translit(str, from, to)
3 undefine(`name´)
4 undivert(number,number,...)

Acknowledgements
We are indebted to Rick Becker, John Chambers,
Doug McIlroy, and especially Jim Weythman,
whose pioneering use of M4 has led to several
valuable improvements. We are also deeply
grateful to Weythman for several substantial con-
tributions to the code.

References
[1]B. W. Kernighan and P. J. Plauger,Software
Tools,Addison-Wesley, Inc., 1976.

