
lowdown — simple markdown translator

Kristaps Dzonsons

lowdown — simple markdown translator
lowdown is a Markdown translator producing HTML5 and roff documents in the ms and man formats. It
doesn’t require XSLT, Python, or external libraries – it’s just clean, secure, open sourceC code with no
dependencies. Its canonical documentation is thelowdown(1)manpage with the library interface at
lowdown(3).

lowdown started as a fork ofhoedown to add sandboxing (pledge(2), capsicum(4), or sandbox_init(3)) and roff
output to securely generate PDFs on OpenBSDwith just mandoc(1).

Want an example? For starters: this page, index.md. The Markdown input is rendered an HTML5 fragment
using lowdown, then further using sblg. You can also see it as index.pdf, generated from groff(1) from ms
output. Another example is the GitHub README.mdrendered as README.htmlor README.pdf.

To get lowdown, just download, verify, unpack, run ./configure, then run doas make install (or use
sudo). lowdown is aBSD.lv project. Homebrew users can use BSD.lv’s tap.

If you can help it, however, don’t use Markdown. Why? Read Ingo’s comments on Markdown for a good
explanation.

Output
Of course, lowdown supports the usual HTML output. Specifically, it produces HTML5 in XML mode. You can
use lowdown to create either a snippet or standalone HTML5 document.

It also supports outputting to the ms macros, originally implemented for the roff typesetting package of Version
7 AT&T UNIX. This way, you can have elegant PDF and PS output by using any modern troff system such as
groff(1).

Furthermore, it supports the man macros, also from Version 7 AT&T UNIX. Beyond the usual troff systems,
this is also supported by mandoc.

You may be tempted to write manpagesin Markdown, but please don’t: use mdoc(7), instead — it’s built for that
purpose! The man output is for technical documentation only (section 7).

Both the ms and man output modes disallow images and equations. The former by definition (although ms
might have a future with some elbow grease), the latter due to (not insurmountable) complexity of converting
LaTeX to eqn(7).

You can control output features by using the -D (disable feature) and -E (enable feature) flags documented in
lowdown.1.html.

Input
Beyond the basic Markdown syntax support, lowdown supports the following Markdown features and
extensions:

• autolinking

• fenced code

• tables

• superscripts

• footnotes

• disabled inline HTML

• “smartypants”

• metadata

2017-09-05

http://opensource.org/licenses/ISC
lowdown.1.html
lowdown.3.html
https://github.com/hoedown/hoedown
http://man.openbsd.org/pledge
https://www.freebsd.org/cgi/man.cgi?query=capsicum&sektion=4
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man3/sandbox_init.3.html
http://www.openbsd.org
http://man.openbsd.org/mandoc
index.md
https://kristaps.bsd.lv/sblg
index.pdf
https://www.gnu.org/s/groff/
README.md
README.html
README.pdf
snapshots/lowdown.tar.gz
snapshots/lowdown.tar.gz.sha512
https://bsd.lv
https://brew.sh
https://github.com/kristapsdz/homebrew-repo
https://undeadly.org/cgi?action=article&sid=20170304230520
https://www.gnu.org/s/groff
https://mdocml.bsd.lv
https://man.openbsd.org
https://man.openbsd.org/mdoc
https://man.openbsd.org/eqn
lowdown.1.html

-2-

You can control which parser features are used by using the -d (disable feature) and -e (enable feature) flags
documented in lowdown.1.html.

Examples
I usually use lowdown when writingsblgarticles when I’m too lazy to write in proper HTML5. (For those not
in the know, sblgis a simple tool for knitting together blog articles into a blog feed.) This basically means
wrapping the output of lowdown in the elements indicating a blog article. I do this in my Makefiles:

.md.xml:
(echo "<?xml version=\"1.0\" encoding=\"UTF-8\" ?>" ; \

echo "<article data-sblg-article=\"1\">" ; \
echo "<header>" ; \
echo "<h1>" ; \
lowdown -X title $< ; \
echo "</h1>" ; \
echo "<aside>" ; \
lowdown -X htmlaside $< ; \
echo "</aside>" ; \
echo "</header>" ; \
lowdown $< ; \
echo "</article>" ;) >$@

If you just want a straight-up HTML5 file, use standalone mode:

lowdown -s -o README.html README.md

This can use the document’s meta-data to populate the title, CSS file, and so on.

The troff output modes work well to make PS or PDF files, although they will omit graphics and equations.
There is a possibility to later add support for PIC, but even then, it will only support specific types of graphics.
The extra groff arguments in the following invocation are for UTF-8 processing (-k and -Dutf8), tables (-t), and
clickable links (-mpdfmark).

lowdown -s -Tms README.md | \
groff -k -Dutf8 -t -ms -mpdfmark > README.ps

On OpenBSD or other BSD systems, you can run lowdown within the base system to produce PDF or PS files
via mandoc:

lowdown -s -Tman README.md | mandoc -Tpdf > README.pdf

Readlowdown(1) for details on running the system.

Library
lowdown is also available as a library, lowdown(3). This effectively wraps around everything invoked by
lowdown(1), so it’s basically the same but... a library.

Testing
The canonical Markdown test, such as found in the original hoedown sources, will not currently work with
lowdown because of the mandatory “smartypants” and other extensions.

I’v e extensively run AFL against the compiled sources with no failures — definitely a credit to the hoedown
authors (and those from who they forked their own sources). I’ll also regularly run the system through valgrind,
also without issue.

lowdown has aCoverity registration for static analysis.

Hacking
Want to hack on lowdown? Of course you do. (Or maybe you should focus on better PS and PDF output for
mandoc(1).)

2017-09-05

lowdown.1.html
https://kristaps.bsd.lv/sblg
https://kristaps.bsd.lv/sblg
http://mdocml.bsd.lv
lowdown.1.html
lowdown.3.html
lowdown.1.html
https://github.com/hoedown/hoedown
http://lcamtuf.coredump.cx/afl/
https://github.com/hoedown/hoedown
http://valgrind.org/
https://scan.coverity.com/projects/lowdown
http://mdocml.bsd.lv

-3-

First, start in library.c. (Themain.cfile is just a caller to the library interface.) Both the renderer (which renders
the parsed document contents in the output format) and the document (which generates the parse AST) are
initialised.

The parse is started in document.c. It is preceded by meta-data parsing, if applicable, which occurs before
document parsing but after the BOM. The document is parsed into an AST (abstract syntax tree) that describes
the document as a tree of nodes, each node corresponding an input token. Once the entire tree has been
generated, the AST is passed into the front-end renderers, which construct output depth-first.

There are three renderers supported: html.c for HTML5 output, nroff.c for -ms and -man output, and a
debugging renderer tree.c.

A note on “real text”.

The only time that input is passed directly into the output renderer is when then normal_text callback is
invoked, blockcode or codespan, raw HTML, or hyperlink components. In both renderers, you can see how the
input is properly escaped by passing into escape.c.

After being fully parsed into an output buffer, the output buffer is passed into a “smartypants” rendering, one for
each renderer type.

Example

For example, consider the following:

Hello **world**

First, the outer block (the subsection) would begin parsing. The parser would then step into the subcomponent:
the header contents. It would then render the subcomponents in order: first the regular text “Hello”, then a bold
section. The bold section would be its own subcomponent with its own regular text child, “world”.

When run through the -Ttree output, it would generate:

LOWDOWN_ROOT
LOWDOWN_DOC_HEADER
LOWDOWN_HEADER

LOWDOWN_NORMAL_TEXT
data: 6 Bytes: Hello

LOWDOWN_DOUBLE_EMPHASIS
LOWDOWN_NORMAL_TEXT

data: 5 Bytes: world
LOWDOWN_DOC_FOOTER

This tree would then be passed into a front-end, such as the HTML5 front-end with -Thtml. The nodes would
be appended into a buffer, which would then be passed back into the subsection parser. It would paste the buffer
into <h2> blocks (in HTML5) or a .SH block (troff outputs).

Finally, the subsection block would be fitted into whatever context it was invoked within.

Known Issues (or, How You Can Help)
There are some known issues, mostly in PDF (-Tms and -Tman) output.

Foremost, there needs to be a font modifier stack, as this feature is not supported directly in the roff language.
For example, if one execute *foo **bar** baz*, the output will be confused because this translate to \fIfoo
\fBbar\fP baz\fP.

Second, there needs to be logic to handle when a link is the first or last component of a font change. For
example, *[foo](...)* will put the font markers on different lines.

In all modes, the “smartypants” formatting should be embedded in document output — not in a separate step as
implemented in the original sources.

Lastly, I’d like a full reference of the Markdown language accepted as a manpage. Markdown is incredibly
inconsistent, so a simple, readable document would be very helpful.

2017-09-05

https://github.com/kristapsdz/lowdown/blob/master/library.c
https://github.com/kristapsdz/lowdown/blob/master/main.c
https://github.com/kristapsdz/lowdown/blob/master/document.c
https://github.com/kristapsdz/lowdown/blob/master/html.c
https://github.com/kristapsdz/lowdown/blob/master/nroff.c
https://github.com/kristapsdz/lowdown/blob/master/tree.c
https://github.com/kristapsdz/lowdown/blob/master/escape.c

