lowdown — simple markdown translator

Kristaps Dzonsons

lowdown — simple markdown translator

lowdown is a Markden translator producing HTML5 andff documents in the ms and man formats. It
doesn'’t require XSL, Python, or gternal libraries — it's just clean, secuopen sourc€ code with no
dependencies. Its canonical documentation isdiwelown(1) manpage with the library intexte at
lowdown(3).

lowdown started as a fork 6bedaevn to add sandboxingledge(2) capsicum(4)or sandbox_init(3) and off
output to securely generate PDFs@penBSDwith justmandoc(1)

Want an gample? Br starters: this pageydex.md. The Markdaevn input is rendered an HTML5 fragment
using lowdown, then further usisglg You can also see it &sdex.pdf, generated frorgroff(1) from ms
output. Another gample is the GitHURREADME.mdrendered aREADME.htmlor README.pdf.

To get lowdown, jusiownload verify, unpack, run ./configure, then run doas make install (or use
sudo). lowdown is aBSD.Iv project. Homebrev users can use BSD.Il\ap

If you can help it, hwever, don't use Markdan. Why? Readngo’s comments on Markahen for a good
explanation.

Output

Of course, lowdown supports the usual HTML output. Specificilroduces HTML5 in XML mode. &0 can
use lowdown to create either a snippet or standalone HTML5 document.

It also supports outputting to the ms macros, originally implemented foofhgypesetting package ofévsion
7 AT&T UNIX. This way, you can hee elgant PDF and PS output by usingyanodern toff system such as
groff(2).

Furthermore, it supports the man macros, also frarsn 7 A&T UNIX. Beyond the usual tff systems,
this is also supported bgandoc

You may be tempted to writeanpagein Markdawn, kut please don't: useadoc(7) instead — it’s hilt for that
purpose! The man output is for technical documentation only (section 7).

Both the ms and man output modes disallonages and equations. The former by definition (although ms
might have a future with some ellogrease), the latter due to (not insurmountable) cofitplef corverting
LaTeX toeqn(7)

You can control output features by using the -D (disable feature) and -E (enable feature) flags documented in
lowdown.1.html

Input

Beyond the basic Markden syntax support, lowdown supports the failog Markdavn features and
extensions:

. autolinking

. fenced code

. tables

. superscripts

. footnotes

. disabled inline HTML
. “smartypants”

. metadata

2017-09-05

http://opensource.org/licenses/ISC
lowdown.1.html
lowdown.3.html
https://github.com/hoedown/hoedown
http://man.openbsd.org/pledge
https://www.freebsd.org/cgi/man.cgi?query=capsicum&sektion=4
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man3/sandbox_init.3.html
http://www.openbsd.org
http://man.openbsd.org/mandoc
index.md
https://kristaps.bsd.lv/sblg
index.pdf
https://www.gnu.org/s/groff/
README.md
README.html
README.pdf
snapshots/lowdown.tar.gz
snapshots/lowdown.tar.gz.sha512
https://bsd.lv
https://brew.sh
https://github.com/kristapsdz/homebrew-repo
https://undeadly.org/cgi?action=article&sid=20170304230520
https://www.gnu.org/s/groff
https://mdocml.bsd.lv
https://man.openbsd.org
https://man.openbsd.org/mdoc
https://man.openbsd.org/eqn
lowdown.1.html

You can control which parser features are used by using the -d (disable feature) and -e (enable feature) flags
documented itowdown.1.html

Examples

| usually use lowdown when writirgplgarticles when I'm too lazy to write in proper HTML5. ofRthose not
in the knav, sblgis a simple tool for knitting together blog articles into a blog feed.) This basically means
wrapping the output of lowdown in the elements indicating a blog article. | do this in mgfiésk

.md.xml:

(echo "<?xml version=\"1.0\" encoding=\"UTF-8\" ?>" ; \
echo "<article data-sblg-article=\"1\">" ; \
echo "<header>" ; \
echo "<h1>";\
lowdown -X title $< ; \
echo "</h1>";\
echo "<aside>" ; \
lowdown -X htmlaside $< ; \
echo "</aside>" ; \
echo "</header>"; \
lowdown $< ; \
echo "</article>" ;) >$@

If you just want a straight-up HTMLS5 file, use standalone mode:
lowdown -s -0 README.html README.md

This can use the document’s meta-data to populate the title, CSS file, and so on.

The trof output modes wrk well to male PS or PDF files, although theill omit graphics and equations.
There is a possibility to later add support for PI@,dven then, it will only support specific types of graphics.
The etra grof arguments in the follving invocation are for UTF-8 processing (-k and -Dutf8), tables (-t), and
clickable links (-mpdfmark).

lowdown -s -Tms README.md | \
groff -k -Dutf8 -t -ms -mpdfmark > README.ps

On OpenBSD or other BSD systems, you can run lowdown within the base system to produce PDF or PS files
via mandoc

lowdown -s -Tman README.md | mandoc -Tpdf > README.pdf

Readlowdown(1) for details on running the system.

Library

lowdown is alsoeailable as a libraryowdown(3). This efectively wraps aroundverything irvoked by
lowdown(1), so it's basically the sameit.. a library

Testing

The canonical Markden test, such as found in the origitaledavn sources, will not currently ark with
lowdown because of the mandatory “smartypants” and ottiensions.

I've extensiely runAFL against the compiled sources with railfires — definitely a credit to theedavn
authors (and those from who yhierked their avn sources). I'll also gularly run the system througlalgrind
also without issue.

lowdown has &overity registration for static analysis.

Hacking

Want to hack on lowdown? Of course you do. (Or maybe you should focus on better PS and PDF output for
mandoc(1)

2017-09-05

lowdown.1.html
https://kristaps.bsd.lv/sblg
https://kristaps.bsd.lv/sblg
http://mdocml.bsd.lv
lowdown.1.html
lowdown.3.html
lowdown.1.html
https://github.com/hoedown/hoedown
http://lcamtuf.coredump.cx/afl/
https://github.com/hoedown/hoedown
http://valgrind.org/
https://scan.coverity.com/projects/lowdown
http://mdocml.bsd.lv

First, start inibrary.c. (Themain.cfile is just a caller to the library intexde.) Both the renderer (which renders

the parsed document contents in the output format) and the document (which generates the parse AST) are
initialised.

The parse is started dlocument.c It is preceded by meta-data parsing, if applicable, which occurs before
document parsingup after the BOM. The document is parsed into an AST (abstract syntax tree) that describes
the document as a tree of nodes, each node corresponding an ieput@uice the entire tree has been

generated, the AST is passed into the front-end renderers, which construct output depth-first.

There are three renderers supportedil.cfor HTML5 output,nroff.c for -ms and -man output, and a
delugging renderetree.c

A note on “real tet”".

The only time that input is passed directly into the output renderer is when then normal_text callback is
invoked, blockcode or codespamwrai TML, or hyperlink components. In both renderers, you can seethm®
input is properly escaped by passing ietsape.c

After being fully parsed into an outputiffer, the output bffer is passed into a “smartypants” rendering, one for
each renderer type.

Example
For example, consider the folldng:

Hello **world**

First, the outer block (the subsectiomuid begin parsing. The parserowld then step into the subcomponent:
the header contents. lowid then render the subcomponents in order: first thdaetext “Hello”, then a bold
section. The bold sectionaumld be its an subcomponent with itsam regular tet child, “world”.

When run through the -Tée output, it vould generate:

LOWDOWN_ROOT
LOWDOWN_DOC_HEADER
LOWDOWN_HEADER

LOWDOWN_NORMAL_TEXT
data: 6 Bytes: Hello
LOWDOWN_DOUBLE_EMPHASIS
LOWDOWN_NORMAL_TEXT
data: 5 Bytes: world
LOWDOWN_DOC_FOOTER

This tree wuld then be passed into a front-end, such as the HTMLS5 front-end with -Thtml. The nodles w
be appended into aiffer, which would then be passed back into the subsection pdtsgould paste theuffer
into <h2> blocks (in HTML5) or a .SH block (trof outputs).

Finally, the subsection blockauld be fitted into whater contat it was irvoked within.

Known Issues (of How You Can Help)
There are some kiam issues, mostly in PDF (-Tms and -Tman) output.

Foremost, there needs to be a font modifier stack, as this feature is not supported directlyfirativrieafe.
For example, if one wecute *foo **bar** baz*, the output will be confused because this translate to \flfoo
\fBbar\fP baz\fP

Second, there needs to be logic to handle when a link is the first or last component of a font drange. F
example, *[foo](...)* will put the font marérs on diferent lines.

In all modes, the “smartypants” formatting should be embedded in document output — not in a separate step as
implemented in the original sources.

Lastly, I'd like a full reference of the Markdm language accepted as a manpage. Mamkds incredibly
inconsistent, so a simple, readable documentiavbe ery helpful.

2017-09-05

https://github.com/kristapsdz/lowdown/blob/master/library.c
https://github.com/kristapsdz/lowdown/blob/master/main.c
https://github.com/kristapsdz/lowdown/blob/master/document.c
https://github.com/kristapsdz/lowdown/blob/master/html.c
https://github.com/kristapsdz/lowdown/blob/master/nroff.c
https://github.com/kristapsdz/lowdown/blob/master/tree.c
https://github.com/kristapsdz/lowdown/blob/master/escape.c

