Hi!

I am trying to convert image data from cartesian/image coordinates to projected coordinates AND vice versa using geolocation arrays in GDAL. I have two questions:

1. Since this transformation is part of a processing chain implemented
   in Python, I try to transform the data directly in-memory, i.e,
   without any disk access. This saves IO time and avoids permission
   errors when trying to write temporary data on Windows. How can this
   be done? I got correct results with the code below, however, only
   when I temporarily write the data to disk. I tried to write the data
   to /vsimem/ using the MEM, GTiff and NUMPY drivers. However,
   gdal.Warp can´t find the data there (FileNotFoundError). I think,
   also the gdal.Transformer class might be useful and I found an
   interesting thread on that here
   <https://lists.osgeo.org/pipermail/gdal-dev/2012-January/031502.html>
   and a related test in the GDAL autotest suite (here
   <https://github.com/OSGeo/gdal/blob/master/autotest/alg/transformgeoloc.py>).
   However, I can´t get it to work for my specific case.
2. My second question is how I can invert the transformation, i.e., how
   can I transform an image with projected coordinates back to
   cartesian/image coordinates, given that a geolocation array tells
   GDAL where to put which pixel in the output? Background is a
   processing pipeline for satellite data where some processing steps
   are running in sensor geometry (image data as acquired by the
   sensor, without any geocoding and projection) and I need to provide
   corresponding AUX data which originally come with projected coordinates.

Here is the code I already have to convert a sample image from cartesian to projected coordinates:

   import os
   from tempfile import TemporaryDirectory
   from osgeo import gdal, osr
   import numpy as np
   from matplotlib import pyplot as plt


   # get some test data
   swath_data = np.random.randint(1, 100, (500, 400))
   lons, lats = np.meshgrid(np.linspace(3, 5, 500),
                             np.linspace(40, 42, 400))

   with TemporaryDirectory() as td:
        p_lons_tmp = os.path.join(td, 'lons.tif')
        p_lats_tmp = os.path.join(td, 'lats.tif')
        p_data_tmp = os.path.join(td, 'data.tif')
        p_data_vrt = os.path.join(td, 'data.vrt')
        p_data_mapgeo_vrt = os.path.join(td, 'data_mapgeo.vrt')

        # save numpy arrays to temporary tif files
        for arr, path in zip((swath_data, lons, lats), (p_data_tmp,
   p_lons_tmp, p_lats_tmp)):
            rows, cols = arr.shape
            drv = gdal.GetDriverByName('GTiff')
            ds = drv.Create(path, cols, rows, 1, gdal.GDT_Float64)
            ds.GetRasterBand(1).WriteArray(arr)
            del ds

        # add geolocation information to input data
        wgs84_wkt = osr.GetUserInputAsWKT('WGS84')
        utm_wkt = osr.GetUserInputAsWKT('EPSG:32632')
        ds = gdal.Translate(p_data_vrt, p_data_tmp, format='VRT')
        ds.SetMetadata(

            dict(
                SRS=wgs84_wkt,
                X_DATASET=p_lons_tmp,
                Y_DATASET=p_lats_tmp,
                X_BAND='1',
                Y_BAND='1',
                PIXEL_OFFSET='0',
                LINE_OFFSET='0',
                PIXEL_STEP='1',
                LINE_STEP='1'
            ),
            'GEOLOCATION'
        )del ds

        # warp from geolocation arrays and read the result
        gdal.Warp(p_data_mapgeo_vrt, p_data_vrt, format='VRT', geoloc=True,
                  srcSRS=wgs84_wkt, dstSRS=utm_wkt)
        data_mapgeo = gdal.Open(p_data_mapgeo_vrt).ReadAsArray()

   # visualize input and output data
   fig, axes = plt.subplots(1, 4)
   for i, (arr, title) in enumerate(zip((swath_data, lons, lats,
   data_mapgeo),
                                      ('swath data', 'lons', 'lats',
   'projected data'))):
        axes[i].imshow(arr, cmap='gray')
        axes[i].set_title(title)
   plt.tight_layout()
   plt.show()


Any help would be highly appreciated!

Best,

Daniel Scheffler


--

M.Sc. Geogr. Daniel Scheffler

Helmholtz Centre Potsdam
GFZ German Research Centre For Geosciences
Department 1 - Geodesy and Remote Sensing
Section 1.4  - Remote Sensing
Telegrafenberg, 14473 Potsdam, Germany

Phone:  +49 (0)331/288-1198
e-mail:daniel.scheff...@gfz-potsdam.de
_______________________________________________
gdal-dev mailing list
gdal-dev@lists.osgeo.org
https://lists.osgeo.org/mailman/listinfo/gdal-dev

Reply via email to