Hello,

here is a new predicate which tests if a number is 1, or (for vector and complex) a collection of 1. The only difference with integer_onep should be for complex where it wants 1+i and not 1. The main use would be in the match branch, so I didn't waste too much time adding many uses, I just added a couple (so the function won't be garbage collected in some refactoring) though I wasn't able to create a testcase (for complex int, '&' or '^' are rejected and '~' means conjugate).

While looking for potential uses for integer_each_onep, I couldn't help noticing a few wrong optimizations for vectors, that I am fixing at the same time.

Bootstrap+testsuite on x86_64-linux-gnu.


2014-09-12  Marc Glisse  <marc.gli...@inria.fr>

gcc/
        * tree.c (integer_each_onep): New function.
        * tree.h (integer_each_onep): Declare it.
        * fold-const.c (fold_binary_loc): Use it for ~A + 1 to -A and
        -A - 1 to ~A.  Disable (X & 1) ^ 1, (X ^ 1) & 1 and ~X & 1 to
        (X & 1) == 0 for vector and complex.
gcc/testsuite/
        * gcc.dg/vec-andxor1.c: New file.


--
Marc Glisse
Index: fold-const.c
===================================================================
--- fold-const.c        (revision 215179)
+++ fold-const.c        (working copy)
@@ -10085,21 +10085,21 @@ fold_binary_loc (location_t loc,
          && (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
        return fold_build2_loc (loc, MINUS_EXPR, type,
                            fold_convert_loc (loc, type, arg1),
                            fold_convert_loc (loc, type,
                                              TREE_OPERAND (arg0, 0)));
 
       if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
        {
          /* Convert ~A + 1 to -A.  */
          if (TREE_CODE (arg0) == BIT_NOT_EXPR
-             && integer_onep (arg1))
+             && integer_each_onep (arg1))
            return fold_build1_loc (loc, NEGATE_EXPR, type,
                                fold_convert_loc (loc, type,
                                                  TREE_OPERAND (arg0, 0)));
 
          /* ~X + X is -1.  */
          if (TREE_CODE (arg0) == BIT_NOT_EXPR
              && !TYPE_OVERFLOW_TRAPS (type))
            {
              tree tem = TREE_OPERAND (arg0, 0);
 
@@ -10612,23 +10612,22 @@ fold_binary_loc (location_t loc,
       /* (-A) - B -> (-B) - A  where B is easily negated and we can swap.  */
       if (TREE_CODE (arg0) == NEGATE_EXPR
          && negate_expr_p (arg1)
          && reorder_operands_p (arg0, arg1))
        return fold_build2_loc (loc, MINUS_EXPR, type,
                            fold_convert_loc (loc, type,
                                              negate_expr (arg1)),
                            fold_convert_loc (loc, type,
                                              TREE_OPERAND (arg0, 0)));
       /* Convert -A - 1 to ~A.  */
-      if (TREE_CODE (type) != COMPLEX_TYPE
-         && TREE_CODE (arg0) == NEGATE_EXPR
-         && integer_onep (arg1)
+      if (TREE_CODE (arg0) == NEGATE_EXPR
+         && integer_each_onep (arg1)
          && !TYPE_OVERFLOW_TRAPS (type))
        return fold_build1_loc (loc, BIT_NOT_EXPR, type,
                            fold_convert_loc (loc, type,
                                              TREE_OPERAND (arg0, 0)));
 
       /* Convert -1 - A to ~A.  */
       if (TREE_CODE (type) != COMPLEX_TYPE
          && integer_all_onesp (arg0))
        return fold_build1_loc (loc, BIT_NOT_EXPR, type, op1);
 
@@ -11377,20 +11376,21 @@ fold_binary_loc (location_t loc,
       /* Convert ~X ^ C to X ^ ~C.  */
       if (TREE_CODE (arg0) == BIT_NOT_EXPR
          && TREE_CODE (arg1) == INTEGER_CST)
        return fold_build2_loc (loc, code, type,
                            fold_convert_loc (loc, type,
                                              TREE_OPERAND (arg0, 0)),
                            fold_build1_loc (loc, BIT_NOT_EXPR, type, arg1));
 
       /* Fold (X & 1) ^ 1 as (X & 1) == 0.  */
       if (TREE_CODE (arg0) == BIT_AND_EXPR
+         && INTEGRAL_TYPE_P (type)
          && integer_onep (TREE_OPERAND (arg0, 1))
          && integer_onep (arg1))
        return fold_build2_loc (loc, EQ_EXPR, type, arg0,
                                build_zero_cst (TREE_TYPE (arg0)));
 
       /* Fold (X & Y) ^ Y as ~X & Y.  */
       if (TREE_CODE (arg0) == BIT_AND_EXPR
          && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
        {
          tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
@@ -11487,33 +11487,35 @@ fold_binary_loc (location_t loc,
          && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
        return omit_one_operand_loc (loc, type, arg0, TREE_OPERAND (arg1, 1));
       /* X & (Y | X) is (Y, X).  */
       if (TREE_CODE (arg1) == BIT_IOR_EXPR
          && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
          && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
        return omit_one_operand_loc (loc, type, arg0, TREE_OPERAND (arg1, 0));
 
       /* Fold (X ^ 1) & 1 as (X & 1) == 0.  */
       if (TREE_CODE (arg0) == BIT_XOR_EXPR
+         && INTEGRAL_TYPE_P (type)
          && integer_onep (TREE_OPERAND (arg0, 1))
          && integer_onep (arg1))
        {
          tree tem2;
          tem = TREE_OPERAND (arg0, 0);
          tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
          tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
                                  tem, tem2);
          return fold_build2_loc (loc, EQ_EXPR, type, tem2,
                                  build_zero_cst (TREE_TYPE (tem)));
        }
       /* Fold ~X & 1 as (X & 1) == 0.  */
       if (TREE_CODE (arg0) == BIT_NOT_EXPR
+         && INTEGRAL_TYPE_P (type)
          && integer_onep (arg1))
        {
          tree tem2;
          tem = TREE_OPERAND (arg0, 0);
          tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
          tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
                                  tem, tem2);
          return fold_build2_loc (loc, EQ_EXPR, type, tem2,
                                  build_zero_cst (TREE_TYPE (tem)));
        }
Index: testsuite/gcc.dg/vec-andxor1.c
===================================================================
--- testsuite/gcc.dg/vec-andxor1.c      (revision 0)
+++ testsuite/gcc.dg/vec-andxor1.c      (working copy)
@@ -0,0 +1,17 @@
+/* { dg-do run } */
+/* { dg-options "-O" } */
+
+typedef int vec __attribute__((vector_size(4*sizeof(int))));
+
+__attribute__((noinline,noclone))
+void f (vec *x) {
+  *x = (*x & 1) ^ 1;
+}
+
+int main() {
+  vec x = { 1, 2, 3, 4 };
+  f(&x);
+  if (x[0] != 0 || x[1] != 1)
+    __builtin_abort();
+  return 0;
+}
Index: tree.c
===================================================================
--- tree.c      (revision 215179)
+++ tree.c      (working copy)
@@ -2162,20 +2162,35 @@ integer_onep (const_tree expr)
        for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
          if (!integer_onep (VECTOR_CST_ELT (expr, i)))
            return false;
        return true;
       }
     default:
       return false;
     }
 }
 
+/* Return 1 if EXPR is the integer constant one.  For complex and vector,
+   return 1 if every piece is the integer constant one.  */
+
+int
+integer_each_onep (const_tree expr)
+{
+  STRIP_NOPS (expr);
+
+  if (TREE_CODE (expr) == COMPLEX_CST)
+    return (integer_onep (TREE_REALPART (expr))
+           && integer_onep (TREE_IMAGPART (expr)));
+  else
+    return integer_onep (expr);
+}
+
 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
    it contains, or a complex or vector whose subparts are such integers.  */
 
 int
 integer_all_onesp (const_tree expr)
 {
   STRIP_NOPS (expr);
 
   if (TREE_CODE (expr) == COMPLEX_CST
       && integer_all_onesp (TREE_REALPART (expr))
Index: tree.h
===================================================================
--- tree.h      (revision 215179)
+++ tree.h      (working copy)
@@ -3936,20 +3936,25 @@ extern tree uniform_vector_p (const_tree
 extern vec<tree, va_gc> *ctor_to_vec (tree);
 
 /* integer_zerop (tree x) is nonzero if X is an integer constant of value 0.  
*/
 
 extern int integer_zerop (const_tree);
 
 /* integer_onep (tree x) is nonzero if X is an integer constant of value 1.  */
 
 extern int integer_onep (const_tree);
 
+/* integer_onep (tree x) is nonzero if X is an integer constant of value 1, or
+   a vector or complex where each part is 1.  */
+
+extern int integer_each_onep (const_tree);
+
 /* integer_all_onesp (tree x) is nonzero if X is an integer constant
    all of whose significant bits are 1.  */
 
 extern int integer_all_onesp (const_tree);
 
 /* integer_minus_onep (tree x) is nonzero if X is an integer constant of
    value -1.  */
 
 extern int integer_minus_onep (const_tree);
 

Reply via email to