Some of the maths builtins try to expand via an optab and fall back
to an expand_call. The optabs path tends to clobber "target",
so the original target is lost by the time we call expand_call. E.g.:
/* Compute into TARGET.
Set TARGET to wherever the result comes back. */
target = expand_binop (mode, builtin_optab, op0, op1,
target, 0, OPTAB_DIRECT);
/* If we were unable to expand via the builtin, stop the sequence
(without outputting the insns) and call to the library function
with the stabilized argument list. */
if (target == 0)
{
end_sequence ();
return expand_call (exp, target, target == const0_rtx);
}
where the expand_call seems to be trying to use the original call target
(as it should IMO) but actually always uses null.
This patch tries to fix the cases I could see. Tested on x86_64-linux-gnu
and mips64-linux-gnu. OK to install?
Richard
gcc/
* builtins.c (expand_builtin_mathfn, expand_builtin_mathfn_2)
(expand_builtin_mathfn_ternary, expand_builtin_mathfn_3)
(expand_builtin_int_roundingfn_2): Keep the original target around
for the fallback case.
Index: gcc/builtins.c
===================================================================
--- gcc/builtins.c 2012-12-23 16:56:30.218846420 +0000
+++ gcc/builtins.c 2012-12-23 16:57:47.849415792 +0000
@@ -2031,7 +2031,7 @@ expand_builtin_mathfn (tree exp, rtx tar
if (optab_handler (builtin_optab, mode) != CODE_FOR_nothing
&& (!errno_set || !optimize_insn_for_size_p ()))
{
- target = gen_reg_rtx (mode);
+ rtx result = gen_reg_rtx (mode);
/* Wrap the computation of the argument in a SAVE_EXPR, as we may
need to expand the argument again. This way, we will not perform
@@ -2042,20 +2042,20 @@ expand_builtin_mathfn (tree exp, rtx tar
start_sequence ();
- /* Compute into TARGET.
- Set TARGET to wherever the result comes back. */
- target = expand_unop (mode, builtin_optab, op0, target, 0);
+ /* Compute into RESULT.
+ Set RESULT to wherever the result comes back. */
+ result = expand_unop (mode, builtin_optab, op0, result, 0);
- if (target != 0)
+ if (result != 0)
{
if (errno_set)
- expand_errno_check (exp, target);
+ expand_errno_check (exp, result);
/* Output the entire sequence. */
insns = get_insns ();
end_sequence ();
emit_insn (insns);
- return target;
+ return result;
}
/* If we were unable to expand via the builtin, stop the sequence
@@ -2078,7 +2078,7 @@ expand_builtin_mathfn (tree exp, rtx tar
expand_builtin_mathfn_2 (tree exp, rtx target, rtx subtarget)
{
optab builtin_optab;
- rtx op0, op1, insns;
+ rtx op0, op1, insns, result;
int op1_type = REAL_TYPE;
tree fndecl = get_callee_fndecl (exp);
tree arg0, arg1;
@@ -2134,7 +2134,7 @@ expand_builtin_mathfn_2 (tree exp, rtx t
if (optab_handler (builtin_optab, mode) == CODE_FOR_nothing)
return NULL_RTX;
- target = gen_reg_rtx (mode);
+ result = gen_reg_rtx (mode);
if (! flag_errno_math || ! HONOR_NANS (mode))
errno_set = false;
@@ -2151,29 +2151,29 @@ expand_builtin_mathfn_2 (tree exp, rtx t
start_sequence ();
- /* Compute into TARGET.
- Set TARGET to wherever the result comes back. */
- target = expand_binop (mode, builtin_optab, op0, op1,
- target, 0, OPTAB_DIRECT);
+ /* Compute into RESULT.
+ Set RESULT to wherever the result comes back. */
+ result = expand_binop (mode, builtin_optab, op0, op1,
+ result, 0, OPTAB_DIRECT);
/* If we were unable to expand via the builtin, stop the sequence
(without outputting the insns) and call to the library function
with the stabilized argument list. */
- if (target == 0)
+ if (result == 0)
{
end_sequence ();
return expand_call (exp, target, target == const0_rtx);
}
if (errno_set)
- expand_errno_check (exp, target);
+ expand_errno_check (exp, result);
/* Output the entire sequence. */
insns = get_insns ();
end_sequence ();
emit_insn (insns);
- return target;
+ return result;
}
/* Expand a call to the builtin trinary math functions (fma).
@@ -2187,7 +2187,7 @@ expand_builtin_mathfn_2 (tree exp, rtx t
expand_builtin_mathfn_ternary (tree exp, rtx target, rtx subtarget)
{
optab builtin_optab;
- rtx op0, op1, op2, insns;
+ rtx op0, op1, op2, insns, result;
tree fndecl = get_callee_fndecl (exp);
tree arg0, arg1, arg2;
enum machine_mode mode;
@@ -2214,7 +2214,7 @@ expand_builtin_mathfn_ternary (tree exp,
if (optab_handler (builtin_optab, mode) == CODE_FOR_nothing)
return NULL_RTX;
- target = gen_reg_rtx (mode);
+ result = gen_reg_rtx (mode);
/* Always stabilize the argument list. */
CALL_EXPR_ARG (exp, 0) = arg0 = builtin_save_expr (arg0);
@@ -2227,15 +2227,15 @@ expand_builtin_mathfn_ternary (tree exp,
start_sequence ();
- /* Compute into TARGET.
- Set TARGET to wherever the result comes back. */
- target = expand_ternary_op (mode, builtin_optab, op0, op1, op2,
- target, 0);
+ /* Compute into RESULT.
+ Set RESULT to wherever the result comes back. */
+ result = expand_ternary_op (mode, builtin_optab, op0, op1, op2,
+ result, 0);
/* If we were unable to expand via the builtin, stop the sequence
(without outputting the insns) and call to the library function
with the stabilized argument list. */
- if (target == 0)
+ if (result == 0)
{
end_sequence ();
return expand_call (exp, target, target == const0_rtx);
@@ -2246,7 +2246,7 @@ expand_builtin_mathfn_ternary (tree exp,
end_sequence ();
emit_insn (insns);
- return target;
+ return result;
}
/* Expand a call to the builtin sin and cos math functions.
@@ -2298,7 +2298,7 @@ expand_builtin_mathfn_3 (tree exp, rtx t
/* Before working hard, check whether the instruction is available. */
if (optab_handler (builtin_optab, mode) != CODE_FOR_nothing)
{
- target = gen_reg_rtx (mode);
+ rtx result = gen_reg_rtx (mode);
/* Wrap the computation of the argument in a SAVE_EXPR, as we may
need to expand the argument again. This way, we will not perform
@@ -2309,37 +2309,35 @@ expand_builtin_mathfn_3 (tree exp, rtx t
start_sequence ();
- /* Compute into TARGET.
- Set TARGET to wherever the result comes back. */
+ /* Compute into RESULT.
+ Set RESULT to wherever the result comes back. */
if (builtin_optab == sincos_optab)
{
- int result;
+ int ok;
switch (DECL_FUNCTION_CODE (fndecl))
{
CASE_FLT_FN (BUILT_IN_SIN):
- result = expand_twoval_unop (builtin_optab, op0, 0, target, 0);
+ ok = expand_twoval_unop (builtin_optab, op0, 0, result, 0);
break;
CASE_FLT_FN (BUILT_IN_COS):
- result = expand_twoval_unop (builtin_optab, op0, target, 0, 0);
+ ok = expand_twoval_unop (builtin_optab, op0, result, 0, 0);
break;
default:
gcc_unreachable ();
}
- gcc_assert (result);
+ gcc_assert (ok);
}
else
- {
- target = expand_unop (mode, builtin_optab, op0, target, 0);
- }
+ result = expand_unop (mode, builtin_optab, op0, result, 0);
- if (target != 0)
+ if (result != 0)
{
/* Output the entire sequence. */
insns = get_insns ();
end_sequence ();
emit_insn (insns);
- return target;
+ return result;
}
/* If we were unable to expand via the builtin, stop the sequence
@@ -2348,9 +2346,7 @@ expand_builtin_mathfn_3 (tree exp, rtx t
end_sequence ();
}
- target = expand_call (exp, target, target == const0_rtx);
-
- return target;
+ return expand_call (exp, target, target == const0_rtx);
}
/* Given an interclass math builtin decl FNDECL and it's argument ARG
@@ -2820,7 +2816,7 @@ expand_builtin_int_roundingfn_2 (tree ex
/* There's no easy way to detect the case we need to set EDOM. */
if (!flag_errno_math)
{
- target = gen_reg_rtx (mode);
+ rtx result = gen_reg_rtx (mode);
/* Wrap the computation of the argument in a SAVE_EXPR, as we may
need to expand the argument again. This way, we will not perform
@@ -2831,13 +2827,13 @@ expand_builtin_int_roundingfn_2 (tree ex
start_sequence ();
- if (expand_sfix_optab (target, op0, builtin_optab))
+ if (expand_sfix_optab (result, op0, builtin_optab))
{
/* Output the entire sequence. */
insns = get_insns ();
end_sequence ();
emit_insn (insns);
- return target;
+ return result;
}
/* If we were unable to expand via the builtin, stop the sequence
@@ -2865,9 +2861,7 @@ expand_builtin_int_roundingfn_2 (tree ex
return convert_to_mode (mode, target, 0);
}
- target = expand_call (exp, target, target == const0_rtx);
-
- return target;
+ return expand_call (exp, target, target == const0_rtx);
}
/* Expand a call to the powi built-in mathematical function. Return NULL_RTX
if