On Fri, 15 Jun 2012, Richard Guenther wrote:

> 
> This tries to completely implement the intersect primitive for
> VRP (what extract_range_from_assert does at its end when merging
> new and old knowledge).
> 
> Bootstrap and regtest pending on x86_64-unknown-linux-gnu.
> 
> I plan to re-organize vrp_meet in a similar fashion as a followup.

The following is what I ended up applying, less conservative in the
[ () ] and ( [] ) cases.

Bootstrapped and tested on x86_64-unknown-linux-gnu.

Richard.

2012-06-18  Richard Guenther  <rguent...@suse.de>

        * tree-vrp.c (extract_range_from_assert): Split out range
        intersecting code.
        (intersect_ranges): New function.
        (vrp_intersect_ranges): Likewise.

Index: trunk/gcc/tree-vrp.c
===================================================================
*** trunk.orig/gcc/tree-vrp.c   2012-06-18 11:23:34.000000000 +0200
--- trunk/gcc/tree-vrp.c        2012-06-18 11:37:39.117212903 +0200
*************** live_on_edge (edge e, tree name)
*** 95,100 ****
--- 95,101 ----
  static int compare_values (tree val1, tree val2);
  static int compare_values_warnv (tree val1, tree val2, bool *);
  static void vrp_meet (value_range_t *, value_range_t *);
+ static void vrp_intersect_ranges (value_range_t *, value_range_t *);
  static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
                                                     tree, tree, bool, bool *,
                                                     bool *);
*************** static void
*** 1515,1521 ****
  extract_range_from_assert (value_range_t *vr_p, tree expr)
  {
    tree var, cond, limit, min, max, type;
!   value_range_t *var_vr, *limit_vr;
    enum tree_code cond_code;
  
    var = ASSERT_EXPR_VAR (expr);
--- 1516,1522 ----
  extract_range_from_assert (value_range_t *vr_p, tree expr)
  {
    tree var, cond, limit, min, max, type;
!   value_range_t *limit_vr;
    enum tree_code cond_code;
  
    var = ASSERT_EXPR_VAR (expr);
*************** extract_range_from_assert (value_range_t
*** 1777,2014 ****
    else
      gcc_unreachable ();
  
!   /* If VAR already had a known range, it may happen that the new
!      range we have computed and VAR's range are not compatible.  For
!      instance,
! 
!       if (p_5 == NULL)
!         p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
!         x_7 = p_6->fld;
!         p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
! 
!      While the above comes from a faulty program, it will cause an ICE
!      later because p_8 and p_6 will have incompatible ranges and at
!      the same time will be considered equivalent.  A similar situation
!      would arise from
! 
!       if (i_5 > 10)
!         i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
!         if (i_5 < 5)
!           i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
! 
!      Again i_6 and i_7 will have incompatible ranges.  It would be
!      pointless to try and do anything with i_7's range because
!      anything dominated by 'if (i_5 < 5)' will be optimized away.
!      Note, due to the wa in which simulation proceeds, the statement
!      i_7 = ASSERT_EXPR <...> we would never be visited because the
!      conditional 'if (i_5 < 5)' always evaluates to false.  However,
!      this extra check does not hurt and may protect against future
!      changes to VRP that may get into a situation similar to the
!      NULL pointer dereference example.
! 
!      Note that these compatibility tests are only needed when dealing
!      with ranges or a mix of range and anti-range.  If VAR_VR and VR_P
!      are both anti-ranges, they will always be compatible, because two
!      anti-ranges will always have a non-empty intersection.  */
! 
!   var_vr = get_value_range (var);
! 
!   /* We may need to make adjustments when VR_P and VAR_VR are numeric
!      ranges or anti-ranges.  */
!   if (vr_p->type == VR_VARYING
!       || vr_p->type == VR_UNDEFINED
!       || var_vr->type == VR_VARYING
!       || var_vr->type == VR_UNDEFINED
!       || symbolic_range_p (vr_p)
!       || symbolic_range_p (var_vr))
!     return;
! 
!   if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
!     {
!       /* If the two ranges have a non-empty intersection, we can
!        refine the resulting range.  Since the assert expression
!        creates an equivalency and at the same time it asserts a
!        predicate, we can take the intersection of the two ranges to
!        get better precision.  */
!       if (value_ranges_intersect_p (var_vr, vr_p))
!       {
!         /* Use the larger of the two minimums.  */
!         if (compare_values (vr_p->min, var_vr->min) == -1)
!           min = var_vr->min;
!         else
!           min = vr_p->min;
! 
!         /* Use the smaller of the two maximums.  */
!         if (compare_values (vr_p->max, var_vr->max) == 1)
!           max = var_vr->max;
!         else
!           max = vr_p->max;
! 
!         set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
!       }
!       else
!       {
!         /* The two ranges do not intersect, set the new range to
!            VARYING, because we will not be able to do anything
!            meaningful with it.  */
!         set_value_range_to_varying (vr_p);
!       }
!     }
!   else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
!            || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
!     {
!       /* A range and an anti-range will cancel each other only if
!        their ends are the same.  For instance, in the example above,
!        p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
!        so VR_P should be set to VR_VARYING.  */
!       if (compare_values (var_vr->min, vr_p->min) == 0
!         && compare_values (var_vr->max, vr_p->max) == 0)
!       set_value_range_to_varying (vr_p);
!       else
!       {
!         tree min, max, anti_min, anti_max, real_min, real_max;
!         int cmp;
! 
!         /* We want to compute the logical AND of the two ranges;
!            there are three cases to consider.
! 
! 
!            1. The VR_ANTI_RANGE range is completely within the
!               VR_RANGE and the endpoints of the ranges are
!               different.  In that case the resulting range
!               should be whichever range is more precise.
!               Typically that will be the VR_RANGE.
! 
!            2. The VR_ANTI_RANGE is completely disjoint from
!               the VR_RANGE.  In this case the resulting range
!               should be the VR_RANGE.
! 
!            3. There is some overlap between the VR_ANTI_RANGE
!               and the VR_RANGE.
! 
!               3a. If the high limit of the VR_ANTI_RANGE resides
!                   within the VR_RANGE, then the result is a new
!                   VR_RANGE starting at the high limit of the
!                   VR_ANTI_RANGE + 1 and extending to the
!                   high limit of the original VR_RANGE.
! 
!               3b. If the low limit of the VR_ANTI_RANGE resides
!                   within the VR_RANGE, then the result is a new
!                   VR_RANGE starting at the low limit of the original
!                   VR_RANGE and extending to the low limit of the
!                   VR_ANTI_RANGE - 1.  */
!         if (vr_p->type == VR_ANTI_RANGE)
!           {
!             anti_min = vr_p->min;
!             anti_max = vr_p->max;
!             real_min = var_vr->min;
!             real_max = var_vr->max;
!           }
!         else
!           {
!             anti_min = var_vr->min;
!             anti_max = var_vr->max;
!             real_min = vr_p->min;
!             real_max = vr_p->max;
!           }
! 
! 
!         /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
!            not including any endpoints.  */
!         if (compare_values (anti_max, real_max) == -1
!             && compare_values (anti_min, real_min) == 1)
!           {
!             /* If the range is covering the whole valid range of
!                the type keep the anti-range.  */
!             if (!vrp_val_is_min (real_min)
!                 || !vrp_val_is_max (real_max))
!               set_value_range (vr_p, VR_RANGE, real_min,
!                                real_max, vr_p->equiv);
!           }
!         /* Case 2, VR_ANTI_RANGE completely disjoint from
!            VR_RANGE.  */
!         else if (compare_values (anti_min, real_max) == 1
!                  || compare_values (anti_max, real_min) == -1)
!           {
!             set_value_range (vr_p, VR_RANGE, real_min,
!                              real_max, vr_p->equiv);
!           }
!         /* Case 3a, the anti-range extends into the low
!            part of the real range.  Thus creating a new
!            low for the real range.  */
!         else if (((cmp = compare_values (anti_max, real_min)) == 1
!                   || cmp == 0)
!                  && compare_values (anti_max, real_max) == -1)
!           {
!             gcc_assert (!is_positive_overflow_infinity (anti_max));
!             if (needs_overflow_infinity (TREE_TYPE (anti_max))
!                 && vrp_val_is_max (anti_max))
!               {
!                 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
!                   {
!                     set_value_range_to_varying (vr_p);
!                     return;
!                   }
!                 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
!               }
!             else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
!               {
!                 if (TYPE_PRECISION (TREE_TYPE (var_vr->min)) == 1
!                     && !TYPE_UNSIGNED (TREE_TYPE (var_vr->min)))
!                   min = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
!                                      anti_max,
!                                      build_int_cst (TREE_TYPE (var_vr->min),
!                                                     -1));
!                 else
!                   min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
!                                      anti_max,
!                                      build_int_cst (TREE_TYPE (var_vr->min),
!                                                     1));
!               }
!             else
!               min = fold_build_pointer_plus_hwi (anti_max, 1);
!             max = real_max;
!             set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
!           }
!         /* Case 3b, the anti-range extends into the high
!            part of the real range.  Thus creating a new
!            higher for the real range.  */
!         else if (compare_values (anti_min, real_min) == 1
!                  && ((cmp = compare_values (anti_min, real_max)) == -1
!                      || cmp == 0))
!           {
!             gcc_assert (!is_negative_overflow_infinity (anti_min));
!             if (needs_overflow_infinity (TREE_TYPE (anti_min))
!                 && vrp_val_is_min (anti_min))
!               {
!                 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
!                   {
!                     set_value_range_to_varying (vr_p);
!                     return;
!                   }
!                 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
!               }
!             else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
!               {
!                 if (TYPE_PRECISION (TREE_TYPE (var_vr->min)) == 1
!                     && !TYPE_UNSIGNED (TREE_TYPE (var_vr->min)))
!                   max = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
!                                      anti_min,
!                                      build_int_cst (TREE_TYPE (var_vr->min),
!                                                     -1));
!                 else
!                   max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
!                                      anti_min,
!                                      build_int_cst (TREE_TYPE (var_vr->min),
!                                                     1));
!               }
!             else
!               max = fold_build_pointer_plus_hwi (anti_min, -1);
!             min = real_min;
!             set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
!           }
!       }
!     }
  }
  
  
--- 1778,1785 ----
    else
      gcc_unreachable ();
  
!   /* Finally intersect the new range with what we already know about var.  */
!   vrp_intersect_ranges (vr_p, get_value_range (var));
  }
  
  
*************** vrp_visit_stmt (gimple stmt, edge *taken
*** 6999,7004 ****
--- 6770,7007 ----
    return SSA_PROP_VARYING;
  }
  
+ /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
+    { VR1TYPE, VR0MIN, VR0MAX } and store the result
+    in { *VR0TYPE, *VR0MIN, *VR0MAX }.  This may not be the smallest
+    possible such range.  The resulting range is not canonicalized.  */
+ 
+ static void
+ intersect_ranges (enum value_range_type *vr0type,
+                 tree *vr0min, tree *vr0max,
+                 enum value_range_type vr1type,
+                 tree vr1min, tree vr1max)
+ {
+   /* [] is vr0, () is vr1 in the following classification comments.  */
+   if (operand_less_p (*vr0max, vr1min) == 1
+       || operand_less_p (vr1max, *vr0min) == 1)
+     {
+       /* [ ] ( ) or ( ) [ ]
+        If the ranges have an empty intersection, the result of the
+        intersect operation is the range for intersecting an
+        anti-range with a range or empty when intersecting two ranges.
+        For intersecting two anti-ranges simply choose vr0.  */
+       if (*vr0type == VR_RANGE
+         && vr1type == VR_ANTI_RANGE)
+       ;
+       else if (*vr0type == VR_ANTI_RANGE
+              && vr1type == VR_RANGE)
+       {
+         *vr0type = vr1type;
+         *vr0min = vr1min;
+         *vr0max = vr1max;
+       }
+       else if (*vr0type == VR_RANGE
+              && vr1type == VR_RANGE)
+       {
+         *vr0type = VR_UNDEFINED;
+         *vr0min = NULL_TREE;
+         *vr0max = NULL_TREE;
+       }
+       else if (*vr0type == VR_ANTI_RANGE
+              && vr1type == VR_ANTI_RANGE)
+       {
+         /* Take VR0.  */
+       }
+     }
+   else if (operand_less_p (vr1max, *vr0max) == 1
+          && operand_less_p (*vr0min, vr1min) == 1)
+     {
+       /* [ (  ) ]  */
+       if (*vr0type == VR_RANGE)
+       {
+         /* If the outer is a range choose the inner one.
+            ???  If the inner is an anti-range this arbitrarily chooses
+            the anti-range.  */
+         *vr0type = vr1type;
+         *vr0min = vr1min;
+         *vr0max = vr1max;
+       }
+       else if (*vr0type == VR_ANTI_RANGE
+              && vr1type == VR_ANTI_RANGE)
+       /* If both are anti-ranges the result is the outer one.  */
+       ;
+       else if (*vr0type == VR_ANTI_RANGE
+              && vr1type == VR_RANGE)
+       {
+         /* The intersection is empty.  */
+         *vr0type = VR_UNDEFINED;
+         *vr0min = NULL_TREE;
+         *vr0max = NULL_TREE;
+       }
+       else
+       gcc_unreachable ();
+     }
+   else if (operand_less_p (*vr0max, vr1max) == 1
+          && operand_less_p (vr1min, *vr0min) == 1)
+     {
+       /* ( [  ] )  */
+       if (vr1type == VR_RANGE)
+       /* If the outer is a range, choose the inner one.
+          ???  If the inner is an anti-range this arbitrarily chooses
+          the anti-range.  */
+       ;
+       else if (*vr0type == VR_ANTI_RANGE
+              && vr1type == VR_ANTI_RANGE)
+       {
+         /* If both are anti-ranges the result is the outer one.  */
+         *vr0type = vr1type;
+         *vr0min = vr1min;
+         *vr0max = vr1max;
+       }
+       else if (vr1type == VR_ANTI_RANGE
+              && *vr0type == VR_RANGE)
+       {
+         /* The intersection is empty.  */
+         *vr0type = VR_UNDEFINED;
+         *vr0min = NULL_TREE;
+         *vr0max = NULL_TREE;
+       }
+       else
+       gcc_unreachable ();
+     }
+   else if ((operand_less_p (vr1min, *vr0max) == 1
+           || operand_equal_p (vr1min, *vr0max, 0))
+          && (operand_less_p (*vr0min, vr1min) == 1
+              || operand_equal_p (*vr0min, vr1min, 0)))
+     {
+       /* [  (  ]  ) */
+       if (*vr0type == VR_ANTI_RANGE
+         && vr1type == VR_ANTI_RANGE)
+       *vr0max = vr1max;
+       else if (*vr0type == VR_RANGE
+              && vr1type == VR_RANGE)
+       *vr0min = vr1min;
+       else if (*vr0type == VR_RANGE
+              && vr1type == VR_ANTI_RANGE)
+       {
+         if (TREE_CODE (vr1min) == INTEGER_CST)
+           *vr0max = int_const_binop (MINUS_EXPR, vr1min,
+                                      integer_one_node);
+         else
+           *vr0max = vr1min;
+       }
+       else if (*vr0type == VR_ANTI_RANGE
+              && vr1type == VR_RANGE)
+       {
+         *vr0type = VR_RANGE;
+         if (TREE_CODE (*vr0max) == INTEGER_CST)
+           *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
+                                      integer_one_node);
+         else
+           *vr0min = *vr0max;
+         *vr0max = vr1max;
+       }
+       else
+       gcc_unreachable ();
+     }
+   else if ((operand_less_p (*vr0min, vr1max) == 1
+           || operand_equal_p (*vr0min, vr1max, 0))
+          && (operand_less_p (vr1min, *vr0min) == 1
+              || operand_equal_p (vr1min, *vr0min, 0)))
+     {
+       /* (  [  )  ] */
+       if (*vr0type == VR_ANTI_RANGE
+         && vr1type == VR_ANTI_RANGE)
+       *vr0min = vr1min;
+       else if (*vr0type == VR_RANGE
+              && vr1type == VR_RANGE)
+       *vr0max = vr1max;
+       else if (*vr0type == VR_RANGE
+              && vr1type == VR_ANTI_RANGE)
+       {
+         if (TREE_CODE (vr1max) == INTEGER_CST)
+           *vr0min = int_const_binop (PLUS_EXPR, vr1max,
+                                      integer_one_node);
+         else
+           *vr0min = vr1max;
+       }
+       else if (*vr0type == VR_ANTI_RANGE
+              && vr1type == VR_RANGE)
+       {
+         *vr0type = VR_RANGE;
+         if (TREE_CODE (*vr0min) == INTEGER_CST)
+           *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
+                                      integer_one_node);
+         else
+           *vr0max = *vr0min;
+         *vr0min = vr1min;
+       }
+       else
+       gcc_unreachable ();
+     }
+ 
+   /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
+      result for the intersection.  That's always a conservative
+      correct estimate.  */
+ 
+   return;
+ }
+ 
+ 
+ /* Intersect the two value-ranges *VR0 and *VR1 and store the result
+    in *VR0.  This may not be the smallest possible such range.  */
+ 
+ static void
+ vrp_intersect_ranges (value_range_t *vr0, value_range_t *vr1)
+ {
+   value_range_t saved;
+ 
+   /* If either range is VR_VARYING the other one wins.  */
+   if (vr1->type == VR_VARYING)
+     return;
+   if (vr0->type == VR_VARYING)
+     {
+       copy_value_range (vr0, vr1);
+       return;
+     }
+ 
+   /* When either range is VR_UNDEFINED the resulting range is
+      VR_UNDEFINED, too.  */
+   if (vr0->type == VR_UNDEFINED)
+     return;
+   if (vr1->type == VR_UNDEFINED)
+     {
+       set_value_range_to_undefined (vr0);
+       return;
+     }
+ 
+   /* Save the original vr0 so we can return it as conservative intersection
+      result when our worker turns things to varying.  */
+   saved = *vr0;
+   intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
+                   vr1->type, vr1->min, vr1->max);
+   /* Make sure to canonicalize the result though as the inversion of a
+      VR_RANGE can still be a VR_RANGE.  */
+   set_and_canonicalize_value_range (vr0, vr0->type,
+                                   vr0->min, vr0->max, vr0->equiv);
+   /* If that failed, use the saved original VR0.  */
+   if (vr0->type == VR_VARYING)
+     {
+       *vr0 = saved;
+       return;
+     }
+   /* If the result is VR_UNDEFINED there is no need to mess with
+      the equivalencies.  */
+   if (vr0->type == VR_UNDEFINED)
+     return;
+ 
+   /* The resulting set of equivalences for range intersection is the union of
+      the two sets.  */
+   if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
+     bitmap_ior_into (vr0->equiv, vr1->equiv);
+   else if (vr1->equiv && !vr0->equiv)
+     bitmap_copy (vr0->equiv, vr1->equiv);
+ }
  
  /* Meet operation for value ranges.  Given two value ranges VR0 and
     VR1, store in VR0 a range that contains both VR0 and VR1.  This

Reply via email to