On Fri, 15 Jun 2012, Richard Guenther wrote: > > This tries to completely implement the intersect primitive for > VRP (what extract_range_from_assert does at its end when merging > new and old knowledge). > > Bootstrap and regtest pending on x86_64-unknown-linux-gnu. > > I plan to re-organize vrp_meet in a similar fashion as a followup.
The following is what I ended up applying, less conservative in the [ () ] and ( [] ) cases. Bootstrapped and tested on x86_64-unknown-linux-gnu. Richard. 2012-06-18 Richard Guenther <rguent...@suse.de> * tree-vrp.c (extract_range_from_assert): Split out range intersecting code. (intersect_ranges): New function. (vrp_intersect_ranges): Likewise. Index: trunk/gcc/tree-vrp.c =================================================================== *** trunk.orig/gcc/tree-vrp.c 2012-06-18 11:23:34.000000000 +0200 --- trunk/gcc/tree-vrp.c 2012-06-18 11:37:39.117212903 +0200 *************** live_on_edge (edge e, tree name) *** 95,100 **** --- 95,101 ---- static int compare_values (tree val1, tree val2); static int compare_values_warnv (tree val1, tree val2, bool *); static void vrp_meet (value_range_t *, value_range_t *); + static void vrp_intersect_ranges (value_range_t *, value_range_t *); static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code, tree, tree, bool, bool *, bool *); *************** static void *** 1515,1521 **** extract_range_from_assert (value_range_t *vr_p, tree expr) { tree var, cond, limit, min, max, type; ! value_range_t *var_vr, *limit_vr; enum tree_code cond_code; var = ASSERT_EXPR_VAR (expr); --- 1516,1522 ---- extract_range_from_assert (value_range_t *vr_p, tree expr) { tree var, cond, limit, min, max, type; ! value_range_t *limit_vr; enum tree_code cond_code; var = ASSERT_EXPR_VAR (expr); *************** extract_range_from_assert (value_range_t *** 1777,2014 **** else gcc_unreachable (); ! /* If VAR already had a known range, it may happen that the new ! range we have computed and VAR's range are not compatible. For ! instance, ! ! if (p_5 == NULL) ! p_6 = ASSERT_EXPR <p_5, p_5 == NULL>; ! x_7 = p_6->fld; ! p_8 = ASSERT_EXPR <p_6, p_6 != NULL>; ! ! While the above comes from a faulty program, it will cause an ICE ! later because p_8 and p_6 will have incompatible ranges and at ! the same time will be considered equivalent. A similar situation ! would arise from ! ! if (i_5 > 10) ! i_6 = ASSERT_EXPR <i_5, i_5 > 10>; ! if (i_5 < 5) ! i_7 = ASSERT_EXPR <i_6, i_6 < 5>; ! ! Again i_6 and i_7 will have incompatible ranges. It would be ! pointless to try and do anything with i_7's range because ! anything dominated by 'if (i_5 < 5)' will be optimized away. ! Note, due to the wa in which simulation proceeds, the statement ! i_7 = ASSERT_EXPR <...> we would never be visited because the ! conditional 'if (i_5 < 5)' always evaluates to false. However, ! this extra check does not hurt and may protect against future ! changes to VRP that may get into a situation similar to the ! NULL pointer dereference example. ! ! Note that these compatibility tests are only needed when dealing ! with ranges or a mix of range and anti-range. If VAR_VR and VR_P ! are both anti-ranges, they will always be compatible, because two ! anti-ranges will always have a non-empty intersection. */ ! ! var_vr = get_value_range (var); ! ! /* We may need to make adjustments when VR_P and VAR_VR are numeric ! ranges or anti-ranges. */ ! if (vr_p->type == VR_VARYING ! || vr_p->type == VR_UNDEFINED ! || var_vr->type == VR_VARYING ! || var_vr->type == VR_UNDEFINED ! || symbolic_range_p (vr_p) ! || symbolic_range_p (var_vr)) ! return; ! ! if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE) ! { ! /* If the two ranges have a non-empty intersection, we can ! refine the resulting range. Since the assert expression ! creates an equivalency and at the same time it asserts a ! predicate, we can take the intersection of the two ranges to ! get better precision. */ ! if (value_ranges_intersect_p (var_vr, vr_p)) ! { ! /* Use the larger of the two minimums. */ ! if (compare_values (vr_p->min, var_vr->min) == -1) ! min = var_vr->min; ! else ! min = vr_p->min; ! ! /* Use the smaller of the two maximums. */ ! if (compare_values (vr_p->max, var_vr->max) == 1) ! max = var_vr->max; ! else ! max = vr_p->max; ! ! set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv); ! } ! else ! { ! /* The two ranges do not intersect, set the new range to ! VARYING, because we will not be able to do anything ! meaningful with it. */ ! set_value_range_to_varying (vr_p); ! } ! } ! else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE) ! || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE)) ! { ! /* A range and an anti-range will cancel each other only if ! their ends are the same. For instance, in the example above, ! p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible, ! so VR_P should be set to VR_VARYING. */ ! if (compare_values (var_vr->min, vr_p->min) == 0 ! && compare_values (var_vr->max, vr_p->max) == 0) ! set_value_range_to_varying (vr_p); ! else ! { ! tree min, max, anti_min, anti_max, real_min, real_max; ! int cmp; ! ! /* We want to compute the logical AND of the two ranges; ! there are three cases to consider. ! ! ! 1. The VR_ANTI_RANGE range is completely within the ! VR_RANGE and the endpoints of the ranges are ! different. In that case the resulting range ! should be whichever range is more precise. ! Typically that will be the VR_RANGE. ! ! 2. The VR_ANTI_RANGE is completely disjoint from ! the VR_RANGE. In this case the resulting range ! should be the VR_RANGE. ! ! 3. There is some overlap between the VR_ANTI_RANGE ! and the VR_RANGE. ! ! 3a. If the high limit of the VR_ANTI_RANGE resides ! within the VR_RANGE, then the result is a new ! VR_RANGE starting at the high limit of the ! VR_ANTI_RANGE + 1 and extending to the ! high limit of the original VR_RANGE. ! ! 3b. If the low limit of the VR_ANTI_RANGE resides ! within the VR_RANGE, then the result is a new ! VR_RANGE starting at the low limit of the original ! VR_RANGE and extending to the low limit of the ! VR_ANTI_RANGE - 1. */ ! if (vr_p->type == VR_ANTI_RANGE) ! { ! anti_min = vr_p->min; ! anti_max = vr_p->max; ! real_min = var_vr->min; ! real_max = var_vr->max; ! } ! else ! { ! anti_min = var_vr->min; ! anti_max = var_vr->max; ! real_min = vr_p->min; ! real_max = vr_p->max; ! } ! ! ! /* Case 1, VR_ANTI_RANGE completely within VR_RANGE, ! not including any endpoints. */ ! if (compare_values (anti_max, real_max) == -1 ! && compare_values (anti_min, real_min) == 1) ! { ! /* If the range is covering the whole valid range of ! the type keep the anti-range. */ ! if (!vrp_val_is_min (real_min) ! || !vrp_val_is_max (real_max)) ! set_value_range (vr_p, VR_RANGE, real_min, ! real_max, vr_p->equiv); ! } ! /* Case 2, VR_ANTI_RANGE completely disjoint from ! VR_RANGE. */ ! else if (compare_values (anti_min, real_max) == 1 ! || compare_values (anti_max, real_min) == -1) ! { ! set_value_range (vr_p, VR_RANGE, real_min, ! real_max, vr_p->equiv); ! } ! /* Case 3a, the anti-range extends into the low ! part of the real range. Thus creating a new ! low for the real range. */ ! else if (((cmp = compare_values (anti_max, real_min)) == 1 ! || cmp == 0) ! && compare_values (anti_max, real_max) == -1) ! { ! gcc_assert (!is_positive_overflow_infinity (anti_max)); ! if (needs_overflow_infinity (TREE_TYPE (anti_max)) ! && vrp_val_is_max (anti_max)) ! { ! if (!supports_overflow_infinity (TREE_TYPE (var_vr->min))) ! { ! set_value_range_to_varying (vr_p); ! return; ! } ! min = positive_overflow_infinity (TREE_TYPE (var_vr->min)); ! } ! else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min))) ! { ! if (TYPE_PRECISION (TREE_TYPE (var_vr->min)) == 1 ! && !TYPE_UNSIGNED (TREE_TYPE (var_vr->min))) ! min = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min), ! anti_max, ! build_int_cst (TREE_TYPE (var_vr->min), ! -1)); ! else ! min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min), ! anti_max, ! build_int_cst (TREE_TYPE (var_vr->min), ! 1)); ! } ! else ! min = fold_build_pointer_plus_hwi (anti_max, 1); ! max = real_max; ! set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv); ! } ! /* Case 3b, the anti-range extends into the high ! part of the real range. Thus creating a new ! higher for the real range. */ ! else if (compare_values (anti_min, real_min) == 1 ! && ((cmp = compare_values (anti_min, real_max)) == -1 ! || cmp == 0)) ! { ! gcc_assert (!is_negative_overflow_infinity (anti_min)); ! if (needs_overflow_infinity (TREE_TYPE (anti_min)) ! && vrp_val_is_min (anti_min)) ! { ! if (!supports_overflow_infinity (TREE_TYPE (var_vr->min))) ! { ! set_value_range_to_varying (vr_p); ! return; ! } ! max = negative_overflow_infinity (TREE_TYPE (var_vr->min)); ! } ! else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min))) ! { ! if (TYPE_PRECISION (TREE_TYPE (var_vr->min)) == 1 ! && !TYPE_UNSIGNED (TREE_TYPE (var_vr->min))) ! max = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min), ! anti_min, ! build_int_cst (TREE_TYPE (var_vr->min), ! -1)); ! else ! max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min), ! anti_min, ! build_int_cst (TREE_TYPE (var_vr->min), ! 1)); ! } ! else ! max = fold_build_pointer_plus_hwi (anti_min, -1); ! min = real_min; ! set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv); ! } ! } ! } } --- 1778,1785 ---- else gcc_unreachable (); ! /* Finally intersect the new range with what we already know about var. */ ! vrp_intersect_ranges (vr_p, get_value_range (var)); } *************** vrp_visit_stmt (gimple stmt, edge *taken *** 6999,7004 **** --- 6770,7007 ---- return SSA_PROP_VARYING; } + /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and + { VR1TYPE, VR0MIN, VR0MAX } and store the result + in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest + possible such range. The resulting range is not canonicalized. */ + + static void + intersect_ranges (enum value_range_type *vr0type, + tree *vr0min, tree *vr0max, + enum value_range_type vr1type, + tree vr1min, tree vr1max) + { + /* [] is vr0, () is vr1 in the following classification comments. */ + if (operand_less_p (*vr0max, vr1min) == 1 + || operand_less_p (vr1max, *vr0min) == 1) + { + /* [ ] ( ) or ( ) [ ] + If the ranges have an empty intersection, the result of the + intersect operation is the range for intersecting an + anti-range with a range or empty when intersecting two ranges. + For intersecting two anti-ranges simply choose vr0. */ + if (*vr0type == VR_RANGE + && vr1type == VR_ANTI_RANGE) + ; + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_RANGE) + { + *vr0type = vr1type; + *vr0min = vr1min; + *vr0max = vr1max; + } + else if (*vr0type == VR_RANGE + && vr1type == VR_RANGE) + { + *vr0type = VR_UNDEFINED; + *vr0min = NULL_TREE; + *vr0max = NULL_TREE; + } + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_ANTI_RANGE) + { + /* Take VR0. */ + } + } + else if (operand_less_p (vr1max, *vr0max) == 1 + && operand_less_p (*vr0min, vr1min) == 1) + { + /* [ ( ) ] */ + if (*vr0type == VR_RANGE) + { + /* If the outer is a range choose the inner one. + ??? If the inner is an anti-range this arbitrarily chooses + the anti-range. */ + *vr0type = vr1type; + *vr0min = vr1min; + *vr0max = vr1max; + } + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_ANTI_RANGE) + /* If both are anti-ranges the result is the outer one. */ + ; + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_RANGE) + { + /* The intersection is empty. */ + *vr0type = VR_UNDEFINED; + *vr0min = NULL_TREE; + *vr0max = NULL_TREE; + } + else + gcc_unreachable (); + } + else if (operand_less_p (*vr0max, vr1max) == 1 + && operand_less_p (vr1min, *vr0min) == 1) + { + /* ( [ ] ) */ + if (vr1type == VR_RANGE) + /* If the outer is a range, choose the inner one. + ??? If the inner is an anti-range this arbitrarily chooses + the anti-range. */ + ; + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_ANTI_RANGE) + { + /* If both are anti-ranges the result is the outer one. */ + *vr0type = vr1type; + *vr0min = vr1min; + *vr0max = vr1max; + } + else if (vr1type == VR_ANTI_RANGE + && *vr0type == VR_RANGE) + { + /* The intersection is empty. */ + *vr0type = VR_UNDEFINED; + *vr0min = NULL_TREE; + *vr0max = NULL_TREE; + } + else + gcc_unreachable (); + } + else if ((operand_less_p (vr1min, *vr0max) == 1 + || operand_equal_p (vr1min, *vr0max, 0)) + && (operand_less_p (*vr0min, vr1min) == 1 + || operand_equal_p (*vr0min, vr1min, 0))) + { + /* [ ( ] ) */ + if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_ANTI_RANGE) + *vr0max = vr1max; + else if (*vr0type == VR_RANGE + && vr1type == VR_RANGE) + *vr0min = vr1min; + else if (*vr0type == VR_RANGE + && vr1type == VR_ANTI_RANGE) + { + if (TREE_CODE (vr1min) == INTEGER_CST) + *vr0max = int_const_binop (MINUS_EXPR, vr1min, + integer_one_node); + else + *vr0max = vr1min; + } + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_RANGE) + { + *vr0type = VR_RANGE; + if (TREE_CODE (*vr0max) == INTEGER_CST) + *vr0min = int_const_binop (PLUS_EXPR, *vr0max, + integer_one_node); + else + *vr0min = *vr0max; + *vr0max = vr1max; + } + else + gcc_unreachable (); + } + else if ((operand_less_p (*vr0min, vr1max) == 1 + || operand_equal_p (*vr0min, vr1max, 0)) + && (operand_less_p (vr1min, *vr0min) == 1 + || operand_equal_p (vr1min, *vr0min, 0))) + { + /* ( [ ) ] */ + if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_ANTI_RANGE) + *vr0min = vr1min; + else if (*vr0type == VR_RANGE + && vr1type == VR_RANGE) + *vr0max = vr1max; + else if (*vr0type == VR_RANGE + && vr1type == VR_ANTI_RANGE) + { + if (TREE_CODE (vr1max) == INTEGER_CST) + *vr0min = int_const_binop (PLUS_EXPR, vr1max, + integer_one_node); + else + *vr0min = vr1max; + } + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_RANGE) + { + *vr0type = VR_RANGE; + if (TREE_CODE (*vr0min) == INTEGER_CST) + *vr0max = int_const_binop (MINUS_EXPR, *vr0min, + integer_one_node); + else + *vr0max = *vr0min; + *vr0min = vr1min; + } + else + gcc_unreachable (); + } + + /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as + result for the intersection. That's always a conservative + correct estimate. */ + + return; + } + + + /* Intersect the two value-ranges *VR0 and *VR1 and store the result + in *VR0. This may not be the smallest possible such range. */ + + static void + vrp_intersect_ranges (value_range_t *vr0, value_range_t *vr1) + { + value_range_t saved; + + /* If either range is VR_VARYING the other one wins. */ + if (vr1->type == VR_VARYING) + return; + if (vr0->type == VR_VARYING) + { + copy_value_range (vr0, vr1); + return; + } + + /* When either range is VR_UNDEFINED the resulting range is + VR_UNDEFINED, too. */ + if (vr0->type == VR_UNDEFINED) + return; + if (vr1->type == VR_UNDEFINED) + { + set_value_range_to_undefined (vr0); + return; + } + + /* Save the original vr0 so we can return it as conservative intersection + result when our worker turns things to varying. */ + saved = *vr0; + intersect_ranges (&vr0->type, &vr0->min, &vr0->max, + vr1->type, vr1->min, vr1->max); + /* Make sure to canonicalize the result though as the inversion of a + VR_RANGE can still be a VR_RANGE. */ + set_and_canonicalize_value_range (vr0, vr0->type, + vr0->min, vr0->max, vr0->equiv); + /* If that failed, use the saved original VR0. */ + if (vr0->type == VR_VARYING) + { + *vr0 = saved; + return; + } + /* If the result is VR_UNDEFINED there is no need to mess with + the equivalencies. */ + if (vr0->type == VR_UNDEFINED) + return; + + /* The resulting set of equivalences for range intersection is the union of + the two sets. */ + if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv) + bitmap_ior_into (vr0->equiv, vr1->equiv); + else if (vr1->equiv && !vr0->equiv) + bitmap_copy (vr0->equiv, vr1->equiv); + } /* Meet operation for value ranges. Given two value ranges VR0 and VR1, store in VR0 a range that contains both VR0 and VR1. This