On 15/02/2024 21:24, Ajit Agarwal wrote:
> Hello Richard:
> 
> As per your suggestion I have divided the patch into target independent
> and target dependent for aarch64 target. I kept aarch64-ldp-fusion same
> and did not change that.

I'm not sure this was what Richard suggested doing, though.
He said (from
https://gcc.gnu.org/pipermail/gcc-patches/2024-February/645545.html):

> Maybe one way of making the review easier would be to split the aarch64
> pass into the "target-dependent" and "target-independent" pieces
> in-place, i.e. keeping everything within aarch64-ldp-fusion.cc, and then
> (as separate patches) move the target-independent pieces outside
> config/aarch64.

but this adds the target-independent parts separately instead of
splitting it out within config/aarch64 (which I agree should make the
review easier).

Thanks,
Alex

> 
> Common infrastructure of load store pair fusion is divided into
> target independent and target dependent code for rs6000 and aarch64
> target.
> 
> Target independent code is structured in the following files.
> gcc/pair-fusion-base.h
> gcc/pair-fusion-common.cc
> gcc/pair-fusion.cc
> 
> Target independent code is the Generic code with pure virtual
> function to interface betwwen target independent and dependent
> code.
> 
> Thanks & Regards
> Ajit
> 
> Target independent code for common infrastructure of load
> store fusion for rs6000 and aarch64 target.
> 
> Common infrastructure of load store pair fusion is divided into
> target independent and target dependent code for rs6000 and aarch64
> target.
> 
> Target independent code is structured in the following files.
> gcc/pair-fusion-base.h
> gcc/pair-fusion-common.cc
> gcc/pair-fusion.cc
> 
> Target independent code is the Generic code with pure virtual
> function to interface betwwen target independent and dependent
> code.
> 
> 2024-02-15  Ajit Kumar Agarwal  <aagar...@linux.ibm.com>
> 
> gcc/ChangeLog:
> 
>       * pair-fusion-base.h: Generic header code for load store fusion
>       that can be shared across different architectures.
>       * pair-fusion-common.cc: Generic source code for load store
>       fusion that can be shared across different architectures.
>       * pair-fusion.cc: Generic implementation of pair_fusion class
>       defined in pair-fusion-base.h
>       * Makefile.in: Add new executable pair-fusion.o and
>       pair-fusion-common.o.
> ---
>  gcc/Makefile.in           |    2 +
>  gcc/pair-fusion-base.h    |  586 ++++++++++++++++++
>  gcc/pair-fusion-common.cc | 1202 ++++++++++++++++++++++++++++++++++++
>  gcc/pair-fusion.cc        | 1225 +++++++++++++++++++++++++++++++++++++
>  4 files changed, 3015 insertions(+)
>  create mode 100644 gcc/pair-fusion-base.h
>  create mode 100644 gcc/pair-fusion-common.cc
>  create mode 100644 gcc/pair-fusion.cc
> 
> diff --git a/gcc/Makefile.in b/gcc/Makefile.in
> index a74761b7ab3..df5061ddfe7 100644
> --- a/gcc/Makefile.in
> +++ b/gcc/Makefile.in
> @@ -1563,6 +1563,8 @@ OBJS = \
>       ipa-strub.o \
>       ipa.o \
>       ira.o \
> +     pair-fusion-common.o \
> +     pair-fusion.o \
>       ira-build.o \
>       ira-costs.o \
>       ira-conflicts.o \
> diff --git a/gcc/pair-fusion-base.h b/gcc/pair-fusion-base.h
> new file mode 100644
> index 00000000000..fdaf4fd743d
> --- /dev/null
> +++ b/gcc/pair-fusion-base.h
> @@ -0,0 +1,586 @@
> +// Generic code for Pair MEM  fusion optimization pass.
> +// Copyright (C) 2023-2024 Free Software Foundation, Inc.
> +//
> +// This file is part of GCC.
> +//
> +// GCC is free software; you can redistribute it and/or modify it
> +// under the terms of the GNU General Public License as published by
> +// the Free Software Foundation; either version 3, or (at your option)
> +// any later version.
> +//
> +// GCC is distributed in the hope that it will be useful, but
> +// WITHOUT ANY WARRANTY; without even the implied warranty of
> +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
> +// General Public License for more details.
> +//
> +// You should have received a copy of the GNU General Public License
> +// along with GCC; see the file COPYING3.  If not see
> +// <http://www.gnu.org/licenses/>.
> +
> +#ifndef GCC_PAIR_FUSION_H
> +#define GCC_PAIR_FUSION_H
> +#define INCLUDE_ALGORITHM
> +#define INCLUDE_FUNCTIONAL
> +#define INCLUDE_LIST
> +#define INCLUDE_TYPE_TRAITS
> +#include "config.h"
> +#include "system.h"
> +#include "coretypes.h"
> +#include "backend.h"
> +#include "rtl.h"
> +#include "df.h"
> +#include "rtl-iter.h"
> +#include "rtl-ssa.h"
> +#include "cfgcleanup.h"
> +#include "tree-pass.h"
> +#include "ordered-hash-map.h"
> +#include "tree-dfa.h"
> +#include "fold-const.h"
> +#include "tree-hash-traits.h"
> +#include "print-tree.h"
> +#include "insn-attr.h"
> +using namespace rtl_ssa;
> +// We pack these fields (load_p, fpsimd_p, and size) into an integer
> +// (LFS) which we use as part of the key into the main hash tables.
> +//
> +// The idea is that we group candidates together only if they agree on
> +// the fields below.  Candidates that disagree on any of these
> +// properties shouldn't be merged together.
> +struct lfs_fields
> +{
> +  bool load_p;
> +  bool fpsimd_p;
> +  unsigned size;
> +};
> +
> +using insn_list_t = std::list<insn_info *>;
> +using insn_iter_t = insn_list_t::iterator;
> +
> +// Information about the accesses at a given offset from a particular
> +// base.  Stored in an access_group, see below.
> +struct access_record
> +{
> +  poly_int64 offset;
> +  std::list<insn_info *> cand_insns;
> +  std::list<access_record>::iterator place;
> +
> +  access_record (poly_int64 off) : offset (off) {}
> +};
> +
> +// A group of accesses where adjacent accesses could be ldp/stp
> +// candidates.  The splay tree supports efficient insertion,
> +// while the list supports efficient iteration.
> +struct access_group
> +{
> +  splay_tree<access_record *> tree;
> +  std::list<access_record> list;
> +
> +  template<typename Alloc>
> +  inline void track (Alloc node_alloc, poly_int64 offset, insn_info *insn);
> +};
> +
> +// Information about a potential base candidate, used in try_fuse_pair.
> +// There may be zero, one, or two viable RTL bases for a given pair.
> +struct base_cand
> +{
> +  // DEF is the def of the base register to be used by the pair.
> +  def_info *def;
> +
> +  // FROM_INSN is -1 if the base candidate is already shared by both
> +  // candidate insns.  Otherwise it holds the index of the insn from
> +  // which the base originated.
> +  //
> +  // In the case that the base is shared, either DEF is already used
> +  // by both candidate accesses, or both accesses see different versions
> +  // of the same regno, in which case DEF is the def consumed by the
> +  // first candidate access.
> +  int from_insn;
> +
> +  // To form a pair, we do so by moving the first access down and the second
> +  // access up.  To determine where to form the pair, and whether or not
> +  // it is safe to form the pair, we track instructions which cannot be
> +  // re-ordered past due to either dataflow or alias hazards.
> +  //
> +  // Since we allow changing the base used by an access, the choice of
> +  // base can change which instructions act as re-ordering hazards for
> +  // this pair (due to different dataflow).  We store the initial
> +  // dataflow hazards for this choice of base candidate in HAZARDS.
> +  //
> +  // These hazards act as re-ordering barriers to each candidate insn
> +  // respectively, in program order.
> +  //
> +  // Later on, when we take alias analysis into account, we narrow
> +  // HAZARDS accordingly.
> +  insn_info *hazards[2];
> +
> +  base_cand (def_info *def, int insn)
> +    : def (def), from_insn (insn), hazards {nullptr, nullptr} {}
> +
> +  base_cand (def_info *def) : base_cand (def, -1) {}
> +
> +  // Test if this base candidate is viable according to HAZARDS.
> +  bool viable () const
> +  {
> +    return !hazards[0] || !hazards[1] || (*hazards[0] > *hazards[1]);
> +  }
> +};
> +
> +// Information about an alternate base.  For a def_info D, it may
> +// instead be expressed as D = BASE + OFFSET.
> +struct alt_base
> +{
> +  def_info *base;
> +  poly_int64 offset;
> +};
> +
> +// Class that implements a state machine for building the changes needed to 
> form
> +// a store pair instruction.  This allows us to easily build the changes in
> +// program order, as required by rtl-ssa.
> +struct stp_change_builder
> +{
> +  enum class state
> +  {
> +    FIRST,
> +    INSERT,
> +    FIXUP_USE,
> +    LAST,
> +    DONE
> +  };
> +
> +  enum class action
> +  {
> +    TOMBSTONE,
> +    CHANGE,
> +    INSERT,
> +    FIXUP_USE
> +  };
> +
> +  struct change
> +  {
> +    action type;
> +    insn_info *insn;
> +  };
> +
> +  bool done () const { return m_state == state::DONE; }
> +
> +  stp_change_builder (insn_info *insns[2],
> +                   insn_info *repurpose,
> +                   insn_info *dest)
> +    : m_state (state::FIRST), m_insns { insns[0], insns[1] },
> +      m_repurpose (repurpose), m_dest (dest), m_use (nullptr) {}
> +
> +  change get_change () const
> +  {
> +    switch (m_state)
> +      {
> +      case state::FIRST:
> +     return {
> +       m_insns[0] == m_repurpose ? action::CHANGE : action::TOMBSTONE,
> +       m_insns[0]
> +     };
> +      case state::LAST:
> +     return {
> +       m_insns[1] == m_repurpose ? action::CHANGE : action::TOMBSTONE,
> +       m_insns[1]
> +     };
> +      case state::INSERT:
> +     return { action::INSERT, m_dest };
> +      case state::FIXUP_USE:
> +     return { action::FIXUP_USE, m_use->insn () };
> +      case state::DONE:
> +     break;
> +      }
> +
> +    gcc_unreachable ();
> +  }
> +
> +  // Transition to the next state.
> +  void advance ()
> +  {
> +    switch (m_state)
> +      {
> +      case state::FIRST:
> +     if (m_repurpose)
> +       m_state = state::LAST;
> +     else
> +       m_state = state::INSERT;
> +     break;
> +      case state::INSERT:
> +      {
> +     def_info *def = memory_access (m_insns[0]->defs ());
> +     while (*def->next_def ()->insn () <= *m_dest)
> +       def = def->next_def ();
> +
> +     // Now we know DEF feeds the insertion point for the new stp.
> +     // Look for any uses of DEF that will consume the new stp.
> +     gcc_assert (*def->insn () <= *m_dest
> +                 && *def->next_def ()->insn () > *m_dest);
> +
> +     auto set = as_a<set_info *> (def);
> +     for (auto use : set->nondebug_insn_uses ())
> +       if (*use->insn () > *m_dest)
> +         {
> +           m_use = use;
> +           break;
> +         }
> +
> +     if (m_use)
> +       m_state = state::FIXUP_USE;
> +     else
> +       m_state = state::LAST;
> +     break;
> +      }
> +      case state::FIXUP_USE:
> +     m_use = m_use->next_nondebug_insn_use ();
> +     if (!m_use)
> +       m_state = state::LAST;
> +     break;
> +      case state::LAST:
> +     m_state = state::DONE;
> +     break;
> +      case state::DONE:
> +     gcc_unreachable ();
> +      }
> +  }
> +
> +private:
> +  state m_state;
> +
> +  // Original candidate stores.
> +  insn_info *m_insns[2];
> +
> +  // If non-null, this is a candidate insn to change into an stp.  Otherwise 
> we
> +  // are deleting both original insns and inserting a new insn for the stp.
> +  insn_info *m_repurpose;
> +
> +  // Destionation of the stp, it will be placed immediately after m_dest.
> +  insn_info *m_dest;
> +
> +  // Current nondebug use that needs updating due to stp insertion.
> +  use_info *m_use;
> +};
> +
> +// Virtual base class for load/store walkers used in alias analysis.
> +struct alias_walker
> +{
> +  virtual bool conflict_p (int &budget) const = 0;
> +  virtual insn_info *insn () const = 0;
> +  virtual bool valid () const  = 0;
> +  virtual void advance () = 0;
> +};
> +
> +// State used by the pass for a given basic block.
> +struct pair_fusion
> +{
> +  using def_hash = nofree_ptr_hash<def_info>;
> +  using expr_key_t = pair_hash<tree_operand_hash, int_hash<int, -1, -2>>;
> +  using def_key_t = pair_hash<def_hash, int_hash<int, -1, -2>>;
> +
> +  // Map of <tree base, LFS> -> access_group.
> +  ordered_hash_map<expr_key_t, access_group> expr_map;
> +
> +  // Map of <RTL-SSA def_info *, LFS> -> access_group.
> +  ordered_hash_map<def_key_t, access_group> def_map;
> +
> +  // Given the def_info for an RTL base register, express it as an offset 
> from
> +  // some canonical base instead.
> +  //
> +  // Canonicalizing bases in this way allows us to identify adjacent accesses
> +  // even if they see different base register defs.
> +  hash_map<def_hash, alt_base> canon_base_map;
> +
> +  static const size_t obstack_alignment = sizeof (void *);
> +  bb_info *m_bb;
> +
> +  pair_fusion (bb_info *bb) : m_bb (bb), m_emitted_tombstone (false)
> +  {
> +    obstack_specify_allocation (&m_obstack, OBSTACK_CHUNK_SIZE,
> +                             obstack_alignment, obstack_chunk_alloc,
> +                             obstack_chunk_free);
> +  }
> +  ~pair_fusion ()
> +  {
> +    obstack_free (&m_obstack, nullptr);
> +
> +    if (m_emitted_tombstone)
> +      {
> +     bitmap_release (&m_tombstone_bitmap);
> +     bitmap_obstack_release (&m_bitmap_obstack);
> +      }
> +  }
> +  void track_access (insn_info *, bool load, rtx mem);
> +  void transform ();
> +  void cleanup_tombstones ();
> +  virtual void set_multiword_subreg (insn_info *i1, insn_info *i2,
> +                                  bool load_p) = 0;
> +  virtual rtx gen_load_store_pair (rtx *pats,  rtx writeback,
> +                                bool load_p) = 0;
> +  void merge_pairs (insn_list_t &, insn_list_t &,
> +                 bool load_p, unsigned access_size);
> +  virtual void transform_for_base (int load_size, access_group &group) = 0;
> +
> +  bool try_fuse_pair (bool load_p, unsigned access_size,
> +                          insn_info *i1, insn_info *i2);
> +
> +  bool fuse_pair (bool load_p, unsigned access_size,
> +               int writeback,
> +               insn_info *i1, insn_info *i2,
> +               base_cand &base,
> +               const insn_range_info &move_range);
> +
> +  void do_alias_analysis (insn_info *alias_hazards[4],
> +                       alias_walker *walkers[4],
> +                       bool load_p);
> +
> +  void track_tombstone (int uid);
> +
> +  bool track_via_mem_expr (insn_info *, rtx mem, lfs_fields lfs);
> +
> +  virtual bool is_fpsimd_op_p (rtx reg_op, machine_mode mem_mode,
> +                            bool load_p) = 0;
> +
> +  virtual bool pair_operand_mode_ok_p (machine_mode mode) = 0;
> +  virtual bool pair_trailing_writeback_p () = 0;
> +  virtual bool pair_check_register_operand (bool load_p, rtx reg_op,
> +                                         machine_mode mem_mode) = 0;
> +  virtual int pair_mem_alias_check_limit () = 0;
> +  virtual bool pair_is_writeback () = 0 ;
> +  virtual bool pair_mem_ok_policy (rtx first_mem, bool load_p,
> +                                machine_mode mode) = 0;
> +  virtual bool fuseable_store_p (insn_info *i1, insn_info *i2) = 0;
> +  virtual bool fuseable_load_p (insn_info *info) = 0;
> +
> +  template<typename Map>
> +    void traverse_base_map (Map &map);
> +
> +private:
> +  obstack m_obstack;
> +
> +  // State for keeping track of tombstone insns emitted for this BB.
> +  bitmap_obstack m_bitmap_obstack;
> +  bitmap_head m_tombstone_bitmap;
> +  bool m_emitted_tombstone;
> +
> +  inline splay_tree_node<access_record *> *node_alloc (access_record *);
> +};
> +// Track the access INSN at offset OFFSET in this access group.
> +// ALLOC_NODE is used to allocate splay tree nodes.
> +template<typename Alloc>
> +void
> +access_group::track (Alloc alloc_node, poly_int64 offset, insn_info *insn)
> +{
> +  auto insert_before = [&](std::list<access_record>::iterator after)
> +    {
> +      auto it = list.emplace (after, offset);
> +      it->cand_insns.push_back (insn);
> +      it->place = it;
> +      return &*it;
> +    };
> +
> +  if (!list.size ())
> +    {
> +      auto access = insert_before (list.end ());
> +      tree.insert_max_node (alloc_node (access));
> +      return;
> +    }
> +
> +  auto compare = [&](splay_tree_node<access_record *> *node)
> +    {
> +      return compare_sizes_for_sort (offset, node->value ()->offset);
> +    };
> +  auto result = tree.lookup (compare);
> +  splay_tree_node<access_record *> *node = tree.root ();
> +  if (result == 0)
> +    node->value ()->cand_insns.push_back (insn);
> +  else
> +    {
> +      auto it = node->value ()->place;
> +      auto after = (result > 0) ? std::next (it) : it;
> +      auto access = insert_before (after);
> +      tree.insert_child (node, result > 0, alloc_node (access));
> +    }
> +}
> +
> +bool
> +store_modifies_mem_p (rtx mem, insn_info *store_insn, int &budget);
> +bool load_modified_by_store_p (insn_info *load,
> +                       insn_info *store,
> +                       int &budget);
> +
> +// Implement some common functionality used by both store_walker
> +// and load_walker.
> +template<bool reverse>
> +class def_walker : public alias_walker
> +{
> +protected:
> +  using def_iter_t = typename std::conditional<reverse,
> +     reverse_def_iterator, def_iterator>::type;
> +
> +  static use_info *start_use_chain (def_iter_t &def_iter)
> +  {
> +    set_info *set = nullptr;
> +    for (; *def_iter; def_iter++)
> +      {
> +     set = dyn_cast<set_info *> (*def_iter);
> +     if (!set)
> +       continue;
> +
> +     use_info *use = reverse
> +       ? set->last_nondebug_insn_use ()
> +       : set->first_nondebug_insn_use ();
> +
> +     if (use)
> +       return use;
> +      }
> +
> +    return nullptr;
> +  }
> +
> +  def_iter_t def_iter;
> +  insn_info *limit;
> +  def_walker (def_info *def, insn_info *limit) :
> +    def_iter (def), limit (limit) {}
> +
> +  virtual bool iter_valid () const { return *def_iter; }
> +
> +public:
> +  insn_info *insn () const override { return (*def_iter)->insn (); }
> +  void advance () override { def_iter++; }
> +  bool valid () const override final
> +  {
> +    if (!iter_valid ())
> +      return false;
> +
> +    if (reverse)
> +      return *(insn ()) > *limit;
> +    else
> +      return *(insn ()) < *limit;
> +  }
> +};
> +
> +// alias_walker that iterates over stores.
> +template<bool reverse, typename InsnPredicate>
> +class store_walker : public def_walker<reverse>
> +{
> +  rtx cand_mem;
> +  InsnPredicate tombstone_p;
> +
> +public:
> +  store_walker (def_info *mem_def, rtx mem, insn_info *limit_insn,
> +             InsnPredicate tombstone_fn) :
> +    def_walker<reverse> (mem_def, limit_insn),
> +    cand_mem (mem), tombstone_p (tombstone_fn) {}
> +  bool conflict_p (int &budget) const override final
> +  {
> +    if (tombstone_p (this->insn ()))
> +      return false;
> +
> +    return store_modifies_mem_p (cand_mem, this->insn (), budget);
> +  }
> +};
> +
> +// alias_walker that iterates over loads.
> +template<bool reverse>
> +class load_walker : public def_walker<reverse>
> +{
> +  using Base = def_walker<reverse>;
> +  using use_iter_t = typename std::conditional<reverse,
> +     reverse_use_iterator, nondebug_insn_use_iterator>::type;
> +
> +  use_iter_t use_iter;
> +  insn_info *cand_store;
> +
> +  bool iter_valid () const override final { return *use_iter; }
> +
> +public:
> +  void advance () override final
> +  {
> +    use_iter++;
> +    if (*use_iter)
> +      return;
> +    this->def_iter++;
> +    use_iter = Base::start_use_chain (this->def_iter);
> +  }
> +
> +  insn_info *insn () const override final
> +  {
> +    return (*use_iter)->insn ();
> +  }
> +  bool conflict_p (int &budget) const override final
> +  {
> +    return load_modified_by_store_p (insn (), cand_store, budget);
> +  }
> +  load_walker (def_info *def, insn_info *store, insn_info *limit_insn)
> +    : Base (def, limit_insn),
> +      use_iter (Base::start_use_chain (this->def_iter)),
> +      cand_store (store) {}
> +};
> +
> +extern insn_info *
> +try_repurpose_store (insn_info *first,
> +                  insn_info *second,
> +                  const insn_range_info &move_range);
> +
> +void reset_debug_use (use_info *use);
> +
> +extern void
> +fixup_debug_uses (obstack_watermark &attempt,
> +               insn_info *insns[2],
> +               rtx orig_rtl[2],
> +               insn_info *pair_dst,
> +               insn_info *trailing_add,
> +               bool load_p,
> +               int writeback,
> +               rtx writeback_effect,
> +               unsigned base_regno);
> +
> +void
> +fixup_debug_uses_trailing_add (obstack_watermark &attempt,
> +                            insn_info *pair_dst,
> +                            insn_info *trailing_add,
> +                            rtx writeback_effect);
> +
> +
> +extern void
> +fixup_debug_use (obstack_watermark &attempt,
> +              use_info *use,
> +              def_info *def,
> +              rtx base,
> +              poly_int64 wb_offset);
> +
> +extern insn_info *
> +find_trailing_add (insn_info *insns[2],
> +                const insn_range_info &pair_range,
> +                int initial_writeback,
> +                rtx *writeback_effect,
> +                def_info **add_def,
> +                def_info *base_def,
> +                poly_int64 initial_offset,
> +                unsigned access_size);
> +
> +rtx drop_writeback (rtx mem);
> +rtx pair_mem_strip_offset (rtx mem, poly_int64 *offset);
> +bool any_pre_modify_p (rtx x);
> +bool any_post_modify_p (rtx x);
> +int encode_lfs (lfs_fields fields);
> +extern insn_info * latest_hazard_before (insn_info *insn, rtx *ignore,
> +                   insn_info *ignore_insn = nullptr);
> +insn_info * first_hazard_after (insn_info *insn, rtx *ignore);
> +bool ranges_overlap_p (const insn_range_info &r1, const insn_range_info &r2);
> +insn_range_info get_def_range (def_info *def);
> +insn_range_info def_downwards_move_range (def_info *def);
> +insn_range_info def_upwards_move_range (def_info *def);
> +rtx gen_tombstone (void);
> +rtx filter_notes (rtx note, rtx result, bool *eh_region, rtx *fr_expr);
> +rtx combine_reg_notes (insn_info *i1, insn_info *i2, bool load_p);
> +rtx extract_writebacks (bool load_p, rtx pats[2], int changed);
> +void do_alias_analysis (insn_info *alias_hazards[4],
> +                alias_walker *walkers[4],
> +                bool load_p);
> +int get_viable_bases (insn_info *insns[2],
> +               vec<base_cand> &base_cands,
> +               rtx cand_mems[2],
> +               unsigned access_size,
> +               bool reversed);
> +void dump_insn_list (FILE *f, const insn_list_t &l);
> +#endif
> diff --git a/gcc/pair-fusion-common.cc b/gcc/pair-fusion-common.cc
> new file mode 100644
> index 00000000000..a3b4a5a5154
> --- /dev/null
> +++ b/gcc/pair-fusion-common.cc
> @@ -0,0 +1,1202 @@
> +// Generic code for Pair MEM  fusion optimization pass.
> +// Copyright (C) 2023-2024 Free Software Foundation, Inc.
> +//
> +// This file is part of GCC.
> +//
> +// GCC is free software; you can redistribute it and/or modify it
> +// under the terms of the GNU General Public License as published by
> +// the Free Software Foundation; either version 3, or (at your option)
> +// any later version.
> +//
> +// GCC is distributed in the hope that it will be useful, but
> +// WITHOUT ANY WARRANTY; without even the implied warranty of
> +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
> +// General Public License for more details.
> +//
> +// You should have received a copy of the GNU General Public License
> +// along with GCC; see the file COPYING3.  If not see
> +// <http://www.gnu.org/licenses/>.
> +#include "pair-fusion-base.h"
> +
> +static constexpr HOST_WIDE_INT PAIR_MEM_IMM_BITS = 7;
> +static constexpr HOST_WIDE_INT PAIR_MEM_IMM_SIGN_BIT = (1 << 
> (PAIR_MEM_IMM_BITS - 1));
> +static constexpr HOST_WIDE_INT PAIR_MEM_MAX_IMM = PAIR_MEM_IMM_SIGN_BIT - 1;
> +static constexpr HOST_WIDE_INT PAIR_MEM_MIN_IMM = -PAIR_MEM_MAX_IMM - 1;
> +// Given a mem MEM, if the address has side effects, return a MEM that 
> accesses
> +// the same address but without the side effects.  Otherwise, return
> +// MEM unchanged.
> +rtx
> +drop_writeback (rtx mem)
> +{
> +  rtx addr = XEXP (mem, 0);
> +
> +  if (!side_effects_p (addr))
> +    return mem;
> +
> +  switch (GET_CODE (addr))
> +    {
> +    case PRE_MODIFY:
> +      addr = XEXP (addr, 1);
> +      break;
> +    case POST_MODIFY:
> +    case POST_INC:
> +    case POST_DEC:
> +      addr = XEXP (addr, 0);
> +      break;
> +    case PRE_INC:
> +    case PRE_DEC:
> +    {
> +      poly_int64 adjustment = GET_MODE_SIZE (GET_MODE (mem));
> +      if (GET_CODE (addr) == PRE_DEC)
> +     adjustment *= -1;
> +      addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), adjustment);
> +      break;
> +    }
> +    default:
> +      gcc_unreachable ();
> +    }
> +
> +  return change_address (mem, GET_MODE (mem), addr);
> +}
> +
> +// Convenience wrapper around strip_offset that can also look through
> +// RTX_AUTOINC addresses.  The interface is like strip_offset except we take 
> a
> +// MEM so that we know the mode of the access.
> +rtx
> +pair_mem_strip_offset (rtx mem, poly_int64 *offset)
> +{
> +  rtx addr = XEXP (mem, 0);
> +
> +  switch (GET_CODE (addr))
> +    {
> +    case PRE_MODIFY:
> +    case POST_MODIFY:
> +      addr = strip_offset (XEXP (addr, 1), offset);
> +      gcc_checking_assert (REG_P (addr));
> +      gcc_checking_assert (rtx_equal_p (XEXP (XEXP (mem, 0), 0), addr));
> +      break;
> +    case PRE_INC:
> +    case POST_INC:
> +      addr = XEXP (addr, 0);
> +      *offset = GET_MODE_SIZE (GET_MODE (mem));
> +      gcc_checking_assert (REG_P (addr));
> +      break;
> +    case PRE_DEC:
> +    case POST_DEC:
> +      addr = XEXP (addr, 0);
> +      *offset = -GET_MODE_SIZE (GET_MODE (mem));
> +      gcc_checking_assert (REG_P (addr));
> +      break;
> +
> +    default:
> +      addr = strip_offset (addr, offset);
> +    }
> +
> +  return addr;
> +}
> +
> +// Return true if X is a PRE_{INC,DEC,MODIFY} rtx.
> +bool
> +any_pre_modify_p (rtx x)
> +{
> +  const auto code = GET_CODE (x);
> +  return code == PRE_INC || code == PRE_DEC || code == PRE_MODIFY;
> +}
> +
> +// Return true if X is a POST_{INC,DEC,MODIFY} rtx.
> +bool
> +any_post_modify_p (rtx x)
> +{
> +  const auto code = GET_CODE (x);
> +  return code == POST_INC || code == POST_DEC || code == POST_MODIFY;
> +}
> +
> +// Given LFS (load_p, fpsimd_p, size) fields in FIELDS, encode these
> +// into an integer for use as a hash table key.
> +int
> +encode_lfs (lfs_fields fields)
> +{
> +  int size_log2 = exact_log2 (fields.size);
> +  //gcc_checking_assert (size_log2 >= 2 && size_log2 <= 4);
> +  return ((int)fields.load_p << 3)
> +    | ((int)fields.fpsimd_p << 2)
> +    | (size_log2 - 2);
> +}
> +
> +// Dummy predicate that never ignores any insns.
> +static bool no_ignore (insn_info *) { return false; }
> +
> +// Return the latest dataflow hazard before INSN.
> +//
> +// If IGNORE is non-NULL, this points to a sub-rtx which we should ignore for
> +// dataflow purposes.  This is needed when considering changing the RTL base 
> of
> +// an access discovered through a MEM_EXPR base.
> +//
> +// If IGNORE_INSN is non-NULL, we should further ignore any hazards arising
> +// from that insn.
> +//
> +// N.B. we ignore any defs/uses of memory here as we deal with that 
> separately,
> +// making use of alias disambiguation.
> +insn_info *
> +latest_hazard_before (insn_info *insn, rtx *ignore,
> +                   insn_info *ignore_insn)// = nullptr)
> +{
> +  insn_info *result = nullptr;
> +
> +  // If the insn can throw then it is at the end of a BB and we can't
> +  // move it, model this by recording a hazard in the previous insn
> +  // which will prevent moving the insn up.
> +  if (cfun->can_throw_non_call_exceptions
> +      && find_reg_note (insn->rtl (), REG_EH_REGION, NULL_RTX))
> +    return insn->prev_nondebug_insn ();
> +
> +  // Return true if we registered the hazard.
> +  auto hazard = [&](insn_info *h) -> bool
> +    {
> +      gcc_checking_assert (*h < *insn);
> +      if (h == ignore_insn)
> +     return false;
> +
> +      if (!result || *h > *result)
> +     result = h;
> +
> +      return true;
> +    };
> +
> +  rtx pat = PATTERN (insn->rtl ());
> +  auto ignore_use = [&](use_info *u)
> +    {
> +      if (u->is_mem ())
> +     return true;
> +
> +      return !refers_to_regno_p (u->regno (), u->regno () + 1, pat, ignore);
> +    };
> +
> +  // Find defs of uses in INSN (RaW).
> +  for (auto use : insn->uses ())
> +    if (!ignore_use (use) && use->def ())
> +      hazard (use->def ()->insn ());
> +
> +  // Find previous defs (WaW) or previous uses (WaR) of defs in INSN.
> +  for (auto def : insn->defs ())
> +    {
> +      if (def->is_mem ())
> +     continue;
> +
> +      if (def->prev_def ())
> +     {
> +       hazard (def->prev_def ()->insn ()); // WaW
> +
> +       auto set = dyn_cast<set_info *> (def->prev_def ());
> +       if (set && set->has_nondebug_insn_uses ())
> +         for (auto use : set->reverse_nondebug_insn_uses ())
> +           if (use->insn () != insn && hazard (use->insn ())) // WaR
> +             break;
> +     }
> +
> +      if (!HARD_REGISTER_NUM_P (def->regno ()))
> +     continue;
> +
> +      // Also need to check backwards for call clobbers (WaW).
> +      for (auto call_group : def->ebb ()->call_clobbers ())
> +     {
> +       if (!call_group->clobbers (def->resource ()))
> +         continue;
> +
> +       auto clobber_insn = prev_call_clobbers_ignoring (*call_group,
> +                                                        def->insn (),
> +                                                        no_ignore);
> +       if (clobber_insn)
> +         hazard (clobber_insn);
> +     }
> +
> +    }
> +
> +  return result;
> +}
> +
> +// Return the first dataflow hazard after INSN.
> +//
> +// If IGNORE is non-NULL, this points to a sub-rtx which we should ignore for
> +// dataflow purposes.  This is needed when considering changing the RTL base 
> of
> +// an access discovered through a MEM_EXPR base.
> +//
> +// N.B. we ignore any defs/uses of memory here as we deal with that 
> separately,
> +// making use of alias disambiguation.
> +insn_info *
> +first_hazard_after (insn_info *insn, rtx *ignore)
> +{
> +  insn_info *result = nullptr;
> +  auto hazard = [insn, &result](insn_info *h)
> +    {
> +      gcc_checking_assert (*h > *insn);
> +      if (!result || *h < *result)
> +     result = h;
> +    };
> +
> +  rtx pat = PATTERN (insn->rtl ());
> +  auto ignore_use = [&](use_info *u)
> +    {
> +      if (u->is_mem ())
> +     return true;
> +
> +      return !refers_to_regno_p (u->regno (), u->regno () + 1, pat, ignore);
> +    };
> +
> +  for (auto def : insn->defs ())
> +    {
> +      if (def->is_mem ())
> +     continue;
> +
> +      if (def->next_def ())
> +     hazard (def->next_def ()->insn ()); // WaW
> +
> +      auto set = dyn_cast<set_info *> (def);
> +      if (set && set->has_nondebug_insn_uses ())
> +     hazard (set->first_nondebug_insn_use ()->insn ()); // RaW
> +
> +      if (!HARD_REGISTER_NUM_P (def->regno ()))
> +     continue;
> +
> +      // Also check for call clobbers of this def (WaW).
> +      for (auto call_group : def->ebb ()->call_clobbers ())
> +     {
> +       if (!call_group->clobbers (def->resource ()))
> +         continue;
> +
> +       auto clobber_insn = next_call_clobbers_ignoring (*call_group,
> +                                                        def->insn (),
> +                                                        no_ignore);
> +       if (clobber_insn)
> +         hazard (clobber_insn);
> +     }
> +    }
> +
> +  // Find any subsequent defs of uses in INSN (WaR).
> +  for (auto use : insn->uses ())
> +    {
> +      if (ignore_use (use))
> +     continue;
> +
> +      if (use->def ())
> +     {
> +       auto def = use->def ()->next_def ();
> +       if (def && def->insn () == insn)
> +         def = def->next_def ();
> +
> +       if (def)
> +         hazard (def->insn ());
> +     }
> +
> +      if (!HARD_REGISTER_NUM_P (use->regno ()))
> +     continue;
> +
> +      // Also need to handle call clobbers of our uses (again WaR).
> +      //
> +      // See restrict_movement_for_uses_ignoring for why we don't
> +      // need to check backwards for call clobbers.
> +      for (auto call_group : use->ebb ()->call_clobbers ())
> +     {
> +       if (!call_group->clobbers (use->resource ()))
> +         continue;
> +
> +       auto clobber_insn = next_call_clobbers_ignoring (*call_group,
> +                                                        use->insn (),
> +                                                        no_ignore);
> +       if (clobber_insn)
> +         hazard (clobber_insn);
> +     }
> +    }
> +
> +  return result;
> +}
> +
> +// Return true iff R1 and R2 overlap.
> +bool
> +ranges_overlap_p (const insn_range_info &r1, const insn_range_info &r2)
> +{
> +  // If either range is empty, then their intersection is empty.
> +  if (!r1 || !r2)
> +    return false;
> +
> +  // When do they not overlap? When one range finishes before the other
> +  // starts, i.e. (*r1.last < *r2.first || *r2.last < *r1.first).
> +  // Inverting this, we get the below.
> +  return *r1.last >= *r2.first && *r2.last >= *r1.first;
> +}
> +// Get the range of insns that def feeds.
> + insn_range_info get_def_range (def_info *def)
> +{
> +  insn_info *last = def->next_def ()->insn ()->prev_nondebug_insn ();
> +  return { def->insn (), last };
> +}
> +
> +// Given a def (of memory), return the downwards range within which we
> +// can safely move this def.
> +insn_range_info
> +def_downwards_move_range (def_info *def)
> +{
> +  auto range = get_def_range (def);
> +
> +  auto set = dyn_cast<set_info *> (def);
> +  if (!set || !set->has_any_uses ())
> +    return range;
> +
> +  auto use = set->first_nondebug_insn_use ();
> +  if (use)
> +    range = move_earlier_than (range, use->insn ());
> +
> +  return range;
> +}
> +
> +// Given a def (of memory), return the upwards range within which we can
> +// safely move this def.
> +insn_range_info
> +def_upwards_move_range (def_info *def)
> +{
> +  def_info *prev = def->prev_def ();
> +  insn_range_info range { prev->insn (), def->insn () };
> +
> +  auto set = dyn_cast<set_info *> (prev);
> +  if (!set || !set->has_any_uses ())
> +    return range;
> +
> +  auto use = set->last_nondebug_insn_use ();
> +  if (use)
> +    range = move_later_than (range, use->insn ());
> +
> +  return range;
> +}
> +
> +// Generate the RTL pattern for a "tombstone"; used temporarily during this 
> pass
> +// to replace stores that are marked for deletion where we can't immediately
> +// delete the store (since there are uses of mem hanging off the store).
> +//
> +// These are deleted at the end of the pass and uses re-parented 
> appropriately
> +// at this point.
> +rtx
> +gen_tombstone (void)
> +{
> +  return gen_rtx_CLOBBER (VOIDmode,
> +                       gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)));
> +}
> +
> +// Go through the reg notes rooted at NOTE, dropping those that we should 
> drop,
> +// and preserving those that we want to keep by prepending them to (and
> +// returning) RESULT.  EH_REGION is used to make sure we have at most one
> +// REG_EH_REGION note in the resulting list.  FR_EXPR is used to return any
> +// REG_FRAME_RELATED_EXPR note we find, as these can need special handling in
> +// combine_reg_notes.
> +rtx
> +filter_notes (rtx note, rtx result, bool *eh_region, rtx *fr_expr)
> +{
> +  for (; note; note = XEXP (note, 1))
> +    {
> +      switch (REG_NOTE_KIND (note))
> +     {
> +     case REG_DEAD:
> +       // REG_DEAD notes aren't required to be maintained.
> +     case REG_EQUAL:
> +     case REG_EQUIV:
> +     case REG_UNUSED:
> +     case REG_NOALIAS:
> +       // These can all be dropped.  For REG_EQU{AL,IV} they cannot apply to
> +       // non-single_set insns, and REG_UNUSED is re-computed by RTl-SSA, see
> +       // rtl-ssa/changes.cc:update_notes.
> +       //
> +       // Similarly, REG_NOALIAS cannot apply to a parallel.
> +     case REG_INC:
> +       // When we form the pair insn, the reg update is implemented
> +       // as just another SET in the parallel, so isn't really an
> +       // auto-increment in the RTL sense, hence we drop the note.
> +       break;
> +     case REG_EH_REGION:
> +       gcc_assert (!*eh_region);
> +       *eh_region = true;
> +       result = alloc_reg_note (REG_EH_REGION, XEXP (note, 0), result);
> +       break;
> +     case REG_CFA_DEF_CFA:
> +     case REG_CFA_OFFSET:
> +     case REG_CFA_RESTORE:
> +       result = alloc_reg_note (REG_NOTE_KIND (note),
> +                                copy_rtx (XEXP (note, 0)),
> +                                result);
> +       break;
> +     case REG_FRAME_RELATED_EXPR:
> +       gcc_assert (!*fr_expr);
> +       *fr_expr = copy_rtx (XEXP (note, 0));
> +       break;
> +     default:
> +       // Unexpected REG_NOTE kind.
> +       gcc_unreachable ();
> +     }
> +    }
> +
> +  return result;
> +}
> +
> +// Return the notes that should be attached to a combination of I1 and I2, 
> where
> +// *I1 < *I2.  LOAD_P is true for loads.
> +rtx
> +combine_reg_notes (insn_info *i1, insn_info *i2, bool load_p)
> +{
> +  // Temporary storage for REG_FRAME_RELATED_EXPR notes.
> +  rtx fr_expr[2] = {};
> +
> +  bool found_eh_region = false;
> +  rtx result = NULL_RTX;
> +  result = filter_notes (REG_NOTES (i2->rtl ()), result,
> +                      &found_eh_region, fr_expr);
> +  result = filter_notes (REG_NOTES (i1->rtl ()), result,
> +                      &found_eh_region, fr_expr + 1);
> +
> +  if (!load_p)
> +    {
> +      // Simple frame-related sp-relative saves don't need CFI notes, but 
> when
> +      // we combine them into an pair mem store  we will need a CFI note as
> +      // dwarf2cfi can't interpret the unspec pair representation directly.
> +      if (RTX_FRAME_RELATED_P (i1->rtl ()) && !fr_expr[0])
> +     fr_expr[0] = copy_rtx (PATTERN (i1->rtl ()));
> +      if (RTX_FRAME_RELATED_P (i2->rtl ()) && !fr_expr[1])
> +     fr_expr[1] = copy_rtx (PATTERN (i2->rtl ()));
> +    }
> +
> +  rtx fr_pat = NULL_RTX;
> +  if (fr_expr[0] && fr_expr[1])
> +    {
> +      // Combining two frame-related insns, need to construct
> +      // a REG_FRAME_RELATED_EXPR note which represents the combined
> +      // operation.
> +      RTX_FRAME_RELATED_P (fr_expr[1]) = 1;
> +      fr_pat = gen_rtx_PARALLEL (VOIDmode,
> +                              gen_rtvec (2, fr_expr[0], fr_expr[1]));
> +    }
> +  else
> +    fr_pat = fr_expr[0] ? fr_expr[0] : fr_expr[1];
> +
> +  if (fr_pat)
> +    result = alloc_reg_note (REG_FRAME_RELATED_EXPR,
> +                          fr_pat, result);
> +
> +  return result;
> +}
> +
> +// Given two memory accesses in PATS, at least one of which is of a
> +// writeback form, extract two non-writeback memory accesses addressed
> +// relative to the initial value of the base register, and output these
> +// in PATS.  Return an rtx that represents the overall change to the
> +// base register.
> +rtx
> +extract_writebacks (bool load_p, rtx pats[2], int changed)
> +{
> +  rtx base_reg = NULL_RTX;
> +  poly_int64 current_offset = 0;
> +
> +  poly_int64 offsets[2];
> +
> +  for (int i = 0; i < 2; i++)
> +    {
> +      rtx mem = XEXP (pats[i], load_p);
> +      rtx reg = XEXP (pats[i], !load_p);
> +
> +      rtx addr = XEXP (mem, 0);
> +      const bool autoinc_p = GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC;
> +
> +      poly_int64 offset;
> +      rtx this_base = pair_mem_strip_offset (mem, &offset);
> +      gcc_assert (REG_P (this_base));
> +      if (base_reg)
> +     gcc_assert (rtx_equal_p (base_reg, this_base));
> +      else
> +     base_reg = this_base;
> +
> +      // If we changed base for the current insn, then we already
> +      // derived the correct mem for this insn from the effective
> +      // address of the other access.
> +      if (i == changed)
> +     {
> +       gcc_checking_assert (!autoinc_p);
> +       offsets[i] = offset;
> +       continue;
> +     }
> +
> +      if (autoinc_p && any_pre_modify_p (addr))
> +     current_offset += offset;
> +
> +      poly_int64 this_off = current_offset;
> +      if (!autoinc_p)
> +     this_off += offset;
> +
> +      offsets[i] = this_off;
> +      rtx new_mem = change_address (mem, GET_MODE (mem),
> +                                 plus_constant (GET_MODE (base_reg),
> +                                                base_reg, this_off));
> +      pats[i] = load_p
> +     ? gen_rtx_SET (reg, new_mem)
> +     : gen_rtx_SET (new_mem, reg);
> +
> +      if (autoinc_p && any_post_modify_p (addr))
> +     current_offset += offset;
> +    }
> +
> +  if (known_eq (current_offset, 0))
> +    return NULL_RTX;
> +
> +  return gen_rtx_SET (base_reg, plus_constant (GET_MODE (base_reg),
> +                                            base_reg, current_offset));
> +}
> +
> +// INSNS contains either {nullptr, pair insn} (when promoting an existing
> +// non-writeback pair) or contains the candidate insns used to form the pair
> +// (when fusing a new pair).
> +//
> +// PAIR_RANGE specifies where we want to form the final pair.
> +// INITIAL_OFFSET gives the current base offset for the pair.
> +// Bit I of INITIAL_WRITEBACK is set if INSNS[I] initially had writeback.
> +// ACCESS_SIZE gives the access size for a single arm of the pair.
> +// BASE_DEF gives the initial def of the base register consumed by the pair.
> +//
> +// Given the above, this function looks for a trailing destructive update of 
> the
> +// base register.  If there is one, we choose the first such update after
> +// PAIR_DST that is still in the same BB as our pair.  We return the new def 
> in
> +// *ADD_DEF and the resulting writeback effect in *WRITEBACK_EFFECT.
> +insn_info *
> +find_trailing_add (insn_info *insns[2],
> +                const insn_range_info &pair_range,
> +                int initial_writeback,
> +                rtx *writeback_effect,
> +                def_info **add_def,
> +                def_info *base_def,
> +                poly_int64 initial_offset,
> +                unsigned access_size)
> +{
> +  // Punt on frame-related insns, it is better to be conservative and
> +  // not try to form writeback pairs here, and means we don't have to
> +  // worry about the writeback case in forming REG_FRAME_RELATED_EXPR
> +  // notes (see combine_reg_notes).
> +  if ((insns[0] && RTX_FRAME_RELATED_P (insns[0]->rtl ()))
> +      || RTX_FRAME_RELATED_P (insns[1]->rtl ()))
> +    return nullptr;
> +
> +  insn_info *pair_dst = pair_range.singleton ();
> +  gcc_assert (pair_dst);
> +
> +  def_info *def = base_def->next_def ();
> +
> +  // In the case that either of the initial pair insns had writeback,
> +  // then there will be intervening defs of the base register.
> +  // Skip over these.
> +  for (int i = 0; i < 2; i++)
> +    if (initial_writeback & (1 << i))
> +      {
> +     gcc_assert (def->insn () == insns[i]);
> +     def = def->next_def ();
> +      }
> +
> +  if (!def || def->bb () != pair_dst->bb ())
> +    return nullptr;
> +
> +  // DEF should now be the first def of the base register after PAIR_DST.
> +  insn_info *cand = def->insn ();
> +  gcc_assert (*cand > *pair_dst);
> +
> +  const auto base_regno = base_def->regno ();
> +
> +  // If CAND doesn't also use our base register,
> +  // it can't destructively update it.
> +  if (!find_access (cand->uses (), base_regno))
> +    return nullptr;
> +
> +  auto rti = cand->rtl ();
> +
> +  if (!INSN_P (rti))
> +    return nullptr;
> +
> +  auto pat = PATTERN (rti);
> +  if (GET_CODE (pat) != SET)
> +    return nullptr;
> +
> +  auto dest = XEXP (pat, 0);
> +  if (!REG_P (dest) || REGNO (dest) != base_regno)
> +    return nullptr;
> +
> +  poly_int64 offset;
> +  rtx rhs_base = strip_offset (XEXP (pat, 1), &offset);
> +  if (!REG_P (rhs_base)
> +      || REGNO (rhs_base) != base_regno
> +      || !offset.is_constant ())
> +    return nullptr;
> +
> +  // If the initial base offset is zero, we can handle any add offset
> +  // (post-inc).  Otherwise, we require the offsets to match (pre-inc).
> +  if (!known_eq (initial_offset, 0) && !known_eq (offset, initial_offset))
> +    return nullptr;
> +
> +  auto off_hwi = offset.to_constant ();
> +
> +  if (off_hwi % access_size != 0)
> +    return nullptr;
> +
> +  off_hwi /= access_size;
> +
> +  if (off_hwi < PAIR_MEM_MIN_IMM || off_hwi > PAIR_MEM_MAX_IMM)
> +    return nullptr;
> +
> +  auto dump_prefix = [&]()
> +    {
> +      if (!insns[0])
> +     fprintf (dump_file, "existing pair i%d: ", insns[1]->uid ());
> +      else
> +     fprintf (dump_file, "  (%d,%d)",
> +              insns[0]->uid (), insns[1]->uid ());
> +    };
> +
> +  insn_info *hazard = latest_hazard_before (cand, nullptr, insns[1]);
> +  if (!hazard || *hazard <= *pair_dst)
> +    {
> +      if (dump_file)
> +     {
> +       dump_prefix ();
> +       fprintf (dump_file,
> +                "folding in trailing add (%d) to use writeback form\n",
> +                cand->uid ());
> +     }
> +
> +      *add_def = def;
> +      *writeback_effect = copy_rtx (pat);
> +      return cand;
> +    }
> +
> +  if (dump_file)
> +    {
> +      dump_prefix ();
> +      fprintf (dump_file,
> +            "can't fold in trailing add (%d), hazard = %d\n",
> +            cand->uid (), hazard->uid ());
> +    }
> +
> +  return nullptr;
> +}
> +
> +// Return true if STORE_INSN may modify mem rtx MEM.  Make sure we keep
> +// within our BUDGET for alias analysis.
> +bool
> +store_modifies_mem_p (rtx mem, insn_info *store_insn, int &budget)
> +{
> +  if (!budget)
> +    {
> +      if (dump_file)
> +     {
> +       fprintf (dump_file,
> +                "exceeded budget, assuming store %d aliases with mem ",
> +                store_insn->uid ());
> +       print_simple_rtl (dump_file, mem);
> +       fprintf (dump_file, "\n");
> +     }
> +
> +      return true;
> +    }
> +
> +  budget--;
> +  return memory_modified_in_insn_p (mem, store_insn->rtl ());
> +}
> +
> +// Return true if LOAD may be modified by STORE.  Make sure we keep
> +// within our BUDGET for alias analysis.
> +bool
> +load_modified_by_store_p (insn_info *load,
> +                       insn_info *store,
> +                       int &budget)
> +{
> +  gcc_checking_assert (budget >= 0);
> +
> +  if (!budget)
> +    {
> +      if (dump_file)
> +     {
> +       fprintf (dump_file,
> +                "exceeded budget, assuming load %d aliases with store %d\n",
> +                load->uid (), store->uid ());
> +     }
> +      return true;
> +    }
> +
> +  // It isn't safe to re-order stores over calls.
> +  if (CALL_P (load->rtl ()))
> +    return true;
> +
> +  budget--;
> +
> +  // Iterate over all MEMs in the load, seeing if any alias with
> +  // our store.
> +  subrtx_var_iterator::array_type array;
> +  rtx pat = PATTERN (load->rtl ());
> +  FOR_EACH_SUBRTX_VAR (iter, array, pat, NONCONST)
> +    if (MEM_P (*iter) && memory_modified_in_insn_p (*iter, store->rtl ()))
> +      return true;
> +
> +  return false;
> +}
> +// Given candidate store insns FIRST and SECOND, see if we can re-purpose one
> +// of them (together with its def of memory) for the stp insn.  If so, return
> +// that insn.  Otherwise, return null.
> +insn_info *
> +try_repurpose_store (insn_info *first,
> +                  insn_info *second,
> +                  const insn_range_info &move_range)
> +{
> +  def_info * const defs[2] = {
> +    memory_access (first->defs ()),
> +    memory_access (second->defs ())
> +  };
> +
> +  if (move_range.includes (first)
> +      || ranges_overlap_p (move_range, def_downwards_move_range (defs[0])))
> +    return first;
> +
> +  if (move_range.includes (second)
> +      || ranges_overlap_p (move_range, def_upwards_move_range (defs[1])))
> +    return second;
> +
> +  return nullptr;
> +}
> +
> +
> +// Reset the debug insn containing USE (the debug insn has been
> +// optimized away).
> +void
> +reset_debug_use (use_info *use)
> +{
> +  auto use_insn = use->insn ();
> +  auto use_rtl = use_insn->rtl ();
> +  insn_change change (use_insn);
> +  change.new_uses = {};
> +  INSN_VAR_LOCATION_LOC (use_rtl) = gen_rtx_UNKNOWN_VAR_LOC ();
> +  crtl->ssa->change_insn (change);
> +}
> +
> +// Update debug uses when folding in a trailing add insn to form a
> +// writeback pair.
> +//
> +// ATTEMPT is used to allocate RTL-SSA temporaries for the changes,
> +// the final pair is placed immediately after PAIR_DST, TRAILING_ADD
> +// is a trailing add insn which is being folded into the pair to make it
> +// use writeback addressing, and WRITEBACK_EFFECT is the pattern for
> +// TRAILING_ADD.
> +void
> +fixup_debug_uses_trailing_add (obstack_watermark &attempt,
> +                            insn_info *pair_dst,
> +                            insn_info *trailing_add,
> +                            rtx writeback_effect)
> +{
> +  rtx base = SET_DEST (writeback_effect);
> +
> +  poly_int64 wb_offset;
> +  rtx base2 = strip_offset (SET_SRC (writeback_effect), &wb_offset);
> +  gcc_checking_assert (rtx_equal_p (base, base2));
> +
> +  auto defs = trailing_add->defs ();
> +  gcc_checking_assert (defs.size () == 1);
> +  def_info *def = defs[0];
> +
> +  if (auto set = safe_dyn_cast<set_info *> (def->prev_def ()))
> +    for (auto use : iterate_safely (set->debug_insn_uses ()))
> +      if (*use->insn () > *pair_dst)
> +     // DEF is getting re-ordered above USE, fix up USE accordingly.
> +     fixup_debug_use (attempt, use, def, base, wb_offset);
> +}
> +
> +// USE is a debug use that needs updating because DEF (a def of the same
> +// register) is being re-ordered over it.  If BASE is non-null, then DEF
> +// is an update of the register BASE by a constant, given by WB_OFFSET,
> +// and we can preserve debug info by accounting for the change in side
> +// effects.
> +void
> +fixup_debug_use (obstack_watermark &attempt,
> +              use_info *use,
> +              def_info *def,
> +              rtx base,
> +              poly_int64 wb_offset)
> +{
> +  auto use_insn = use->insn ();
> +  if (base)
> +    {
> +      auto use_rtl = use_insn->rtl ();
> +      insn_change change (use_insn);
> +
> +      gcc_checking_assert (REG_P (base) && use->regno () == REGNO (base));
> +      change.new_uses = check_remove_regno_access (attempt,
> +                                                change.new_uses,
> +                                                use->regno ());
> +
> +      // The effect of the writeback is to add WB_OFFSET to BASE.  If
> +      // we're re-ordering DEF below USE, then we update USE by adding
> +      // WB_OFFSET to it.  Otherwise, if we're re-ordering DEF above
> +      // USE, we update USE by undoing the effect of the writeback
> +      // (subtracting WB_OFFSET).
> +      use_info *new_use;
> +      if (*def->insn () > *use_insn)
> +     {
> +       // We now need USE_INSN to consume DEF.  Create a new use of DEF.
> +       //
> +       // N.B. this means until we call change_insns for the main change
> +       // group we will temporarily have a debug use consuming a def that
> +       // comes after it, but RTL-SSA doesn't currently support updating
> +       // debug insns as part of the main change group (together with
> +       // nondebug changes), so we will have to live with this update
> +       // leaving the IR being temporarily inconsistent.  It seems to
> +       // work out OK once the main change group is applied.
> +       wb_offset *= -1;
> +       new_use = crtl->ssa->create_use (attempt,
> +                                        use_insn,
> +                                        as_a<set_info *> (def));
> +     }
> +      else
> +     new_use = find_access (def->insn ()->uses (), use->regno ());
> +
> +      change.new_uses = insert_access (attempt, new_use, change.new_uses);
> +
> +      if (dump_file)
> +     {
> +       const char *dir = (*def->insn () < *use_insn) ? "down" : "up";
> +       pretty_printer pp;
> +       pp_string (&pp, "[");
> +       pp_access (&pp, use, 0);
> +       pp_string (&pp, "]");
> +       pp_string (&pp, " due to wb def ");
> +       pp_string (&pp, "[");
> +       pp_access (&pp, def, 0);
> +       pp_string (&pp, "]");
> +       fprintf (dump_file,
> +                "  i%d: fix up debug use %s re-ordered %s, "
> +                "sub r%u -> r%u + ",
> +                use_insn->uid (), pp_formatted_text (&pp),
> +                dir, REGNO (base), REGNO (base));
> +       print_dec (wb_offset, dump_file);
> +       fprintf (dump_file, "\n");
> +     }
> +
> +      insn_propagation prop (use_rtl, base,
> +                          plus_constant (GET_MODE (base), base, wb_offset));
> +      if (prop.apply_to_pattern (&INSN_VAR_LOCATION_LOC (use_rtl)))
> +     crtl->ssa->change_insn (change);
> +      else
> +     {
> +       if (dump_file)
> +         fprintf (dump_file, "  i%d: RTL substitution failed (%s)"
> +                  ", resetting debug insn", use_insn->uid (),
> +                  prop.failure_reason);
> +       reset_debug_use (use);
> +     }
> +    }
> +  else
> +    {
> +      if (dump_file)
> +     {
> +       pretty_printer pp;
> +       pp_string (&pp, "[");
> +       pp_access (&pp, use, 0);
> +       pp_string (&pp, "] due to re-ordered load def [");
> +       pp_access (&pp, def, 0);
> +       pp_string (&pp, "]");
> +       fprintf (dump_file, "  i%d: resetting debug use %s\n",
> +                use_insn->uid (), pp_formatted_text (&pp));
> +     }
> +      reset_debug_use (use);
> +    }
> +}
> +
> +// Called from fuse_pair, fixes up any debug uses that will be affected
> +// by the changes.
> +//
> +// ATTEMPT is the obstack watermark used to allocate RTL-SSA temporaries for
> +// the changes, INSNS gives the candidate insns: at this point the use/def
> +// information should still be as on entry to fuse_pair, but the patterns may
> +// have changed, hence we pass ORIG_RTL which contains the original patterns
> +// for the candidate insns.
> +//
> +// The final pair will be placed immediately after PAIR_DST, LOAD_P is true 
> if
> +// it is a load pair, bit I of WRITEBACK is set if INSNS[I] originally had
> +// writeback, and WRITEBACK_EFFECT is an rtx describing the overall update to
> +// the base register in the final pair (if any).  BASE_REGNO gives the 
> register
> +// number of the base register used in the final pair.
> +void
> +fixup_debug_uses (obstack_watermark &attempt,
> +               insn_info *insns[2],
> +               rtx orig_rtl[2],
> +               insn_info *pair_dst,
> +               insn_info *trailing_add,
> +               bool load_p,
> +               int writeback,
> +               rtx writeback_effect,
> +               unsigned base_regno)
> +{
> +  // USE is a debug use that needs updating because DEF (a def of the
> +  // resource) is being re-ordered over it.  If WRITEBACK_PAT is non-NULL,
> +  // then it gives the original RTL pattern for DEF's insn, and DEF is a
> +  // writeback update of the base register.
> +  //
> +  // This simply unpacks WRITEBACK_PAT if needed and calls fixup_debug_use.
> +  auto update_debug_use = [&](use_info *use, def_info *def,
> +                           rtx writeback_pat)
> +    {
> +      poly_int64 offset = 0;
> +      rtx base = NULL_RTX;
> +      if (writeback_pat)
> +     {
> +       rtx mem = XEXP (writeback_pat, load_p);
> +       gcc_checking_assert (GET_RTX_CLASS (GET_CODE (XEXP (mem, 0)))
> +                            == RTX_AUTOINC);
> +
> +       base = pair_mem_strip_offset (mem, &offset);
> +       gcc_checking_assert (REG_P (base) && REGNO (base) == base_regno);
> +     }
> +      fixup_debug_use (attempt, use, def, base, offset);
> +    };
> +
> +  // Reset any debug uses of mem over which we re-ordered a store.
> +  //
> +  // It would be nice to try and preserve debug info here, but it seems that
> +  // would require doing alias analysis to see if the store aliases with the
> +  // debug use, which seems a little extravagant just to preserve debug info.
> +  if (!load_p)
> +    {
> +      auto def = memory_access (insns[0]->defs ());
> +      auto last_def = memory_access (insns[1]->defs ());
> +      for (; def != last_def; def = def->next_def ())
> +     {
> +       auto set = as_a<set_info *> (def);
> +       for (auto use : iterate_safely (set->debug_insn_uses ()))
> +         {
> +           if (dump_file)
> +             fprintf (dump_file, "  i%d: resetting debug use of mem\n",
> +                      use->insn ()->uid ());
> +           reset_debug_use (use);
> +         }
> +     }
> +    }
> +
> +  // Now let's take care of register uses, starting with debug uses
> +  // attached to defs from our first insn.
> +  for (auto def : insns[0]->defs ())
> +    {
> +      auto set = dyn_cast<set_info *> (def);
> +      if (!set || set->is_mem () || !set->first_debug_insn_use ())
> +     continue;
> +
> +      def_info *defs[2] = {
> +     def,
> +     find_access (insns[1]->defs (), def->regno ())
> +      };
> +
> +      rtx writeback_pats[2] = {};
> +      if (def->regno () == base_regno)
> +     for (int i = 0; i < 2; i++)
> +       if (writeback & (1 << i))
> +         {
> +           gcc_checking_assert (defs[i]);
> +           writeback_pats[i] = orig_rtl[i];
> +         }
> +
> +      // Now that we've characterized the defs involved, go through the
> +      // debug uses and determine how to update them (if needed).
> +      for (auto use : iterate_safely (set->debug_insn_uses ()))
> +     {
> +       if (*pair_dst < *use->insn () && defs[1])
> +         // We're re-ordering defs[1] above a previous use of the
> +         // same resource.
> +         update_debug_use (use, defs[1], writeback_pats[1]);
> +       else if (*pair_dst >= *use->insn ())
> +         // We're re-ordering defs[0] below its use.
> +         update_debug_use (use, defs[0], writeback_pats[0]);
> +     }
> +    }
> +
> +  // Now let's look at registers which are def'd by the second insn
> +  // but not by the first insn, there may still be debug uses of a
> +  // previous def which can be affected by moving the second insn up.
> +  for (auto def : insns[1]->defs ())
> +    {
> +      // This should be M log N where N is the number of defs in
> +      // insns[0] and M is the number of defs in insns[1].
> +      if (def->is_mem () || find_access (insns[0]->defs (), def->regno ()))
> +       continue;
> +
> +      auto prev_set = safe_dyn_cast<set_info *> (def->prev_def ());
> +      if (!prev_set)
> +     continue;
> +
> +      rtx writeback_pat = NULL_RTX;
> +      if (def->regno () == base_regno && (writeback & 2))
> +     writeback_pat = orig_rtl[1];
> +
> +      // We have a def in insns[1] which isn't def'd by the first insn.
> +      // Look to the previous def and see if it has any debug uses.
> +      for (auto use : iterate_safely (prev_set->debug_insn_uses ()))
> +     if (*pair_dst < *use->insn ())
> +       // We're ordering DEF above a previous use of the same register.
> +       update_debug_use (use, def, writeback_pat);
> +    }
> +
> +  if ((writeback & 2) && !writeback_effect)
> +    {
> +      // If the second insn initially had writeback but the final
> +      // pair does not, then there may be trailing debug uses of the
> +      // second writeback def which need re-parenting: do that.
> +      auto def = find_access (insns[1]->defs (), base_regno);
> +      gcc_assert (def);
> +      auto set = as_a<set_info *> (def);
> +      for (auto use : iterate_safely (set->debug_insn_uses ()))
> +     {
> +       insn_change change (use->insn ());
> +       change.new_uses = check_remove_regno_access (attempt,
> +                                                    change.new_uses,
> +                                                    base_regno);
> +       auto new_use = find_access (insns[0]->uses (), base_regno);
> +
> +       // N.B. insns must have already shared a common base due to writeback.
> +       gcc_assert (new_use);
> +
> +       if (dump_file)
> +         fprintf (dump_file,
> +                  "  i%d: cancelling wb, re-parenting trailing debug use\n",
> +                  use->insn ()->uid ());
> +
> +       change.new_uses = insert_access (attempt, new_use, change.new_uses);
> +       crtl->ssa->change_insn (change);
> +     }
> +    }
> +  else if (trailing_add)
> +    fixup_debug_uses_trailing_add (attempt, pair_dst, trailing_add,
> +                                writeback_effect);
> +}
> +
> +// Given INSNS (in program order) which are known to be adjacent, look
> +// to see if either insn has a suitable RTL (register) base that we can
> +// use to form a pair.  Push these to BASE_CANDS if we find any.  CAND_MEMs
> +// gives the relevant mems from the candidate insns, ACCESS_SIZE gives the
> +// size of a single candidate access, and REVERSED says whether the accesses
> +// are inverted in offset order.
> +//
> +// Returns an integer where bit (1 << i) is set if INSNS[i] uses writeback
> +// addressing.
> +int
> +get_viable_bases (insn_info *insns[2],
> +               vec<base_cand> &base_cands,
> +               rtx cand_mems[2],
> +               unsigned access_size,
> +               bool reversed)
> +{
> +  // We discovered this pair through a common base.  Need to ensure that
> +  // we have a common base register that is live at both locations.
> +  def_info *base_defs[2] = {};
> +  int writeback = 0;
> +  for (int i = 0; i < 2; i++)
> +    {
> +      const bool is_lower = (i == reversed);
> +      poly_int64 poly_off;
> +      rtx base = pair_mem_strip_offset (cand_mems[i], &poly_off);
> +      if (GET_RTX_CLASS (GET_CODE (XEXP (cand_mems[i], 0))) == RTX_AUTOINC)
> +     writeback |= (1 << i);
> +
> +      if (!REG_P (base) || !poly_off.is_constant ())
> +     continue;
> +
> +      // Punt on accesses relative to eliminable regs.  See the comment in
> +      // pair_fusion::track_access for a detailed explanation of this.
> +      if (!reload_completed
> +       && (REGNO (base) == FRAME_POINTER_REGNUM
> +           || REGNO (base) == ARG_POINTER_REGNUM))
> +     continue;
> +
> +      HOST_WIDE_INT base_off = poly_off.to_constant ();
> +
> +      // It should be unlikely that we ever punt here, since MEM_EXPR offset
> +      // alignment should be a good proxy for register offset alignment.
> +      if (base_off % access_size != 0)
> +     {
> +       if (dump_file)
> +         fprintf (dump_file,
> +                  "base not viable, offset misaligned (insn %d)\n",
> +                  insns[i]->uid ());
> +       continue;
> +     }
> +
> +      base_off /= access_size;
> +
> +      if (!is_lower)
> +     base_off--;
> +
> +      if (base_off < PAIR_MEM_MIN_IMM || base_off > PAIR_MEM_MAX_IMM)
> +     continue;
> +
> +      use_info *use = find_access (insns[i]->uses (), REGNO (base));
> +      gcc_assert (use);
> +      base_defs[i] = use->def ();
> +    }
> +
> +  if (!base_defs[0] && !base_defs[1])
> +    {
> +      if (dump_file)
> +     fprintf (dump_file, "no viable base register for pair (%d,%d)\n",
> +              insns[0]->uid (), insns[1]->uid ());
> +      return writeback;
> +    }
> +
> +  for (int i = 0; i < 2; i++)
> +    if ((writeback & (1 << i)) && !base_defs[i])
> +      {
> +     if (dump_file)
> +       fprintf (dump_file, "insn %d has writeback but base isn't viable\n",
> +                insns[i]->uid ());
> +     return writeback;
> +      }
> +
> +  if (writeback == 3
> +      && base_defs[0]->regno () != base_defs[1]->regno ())
> +    {
> +      if (dump_file)
> +     fprintf (dump_file,
> +              "pair (%d,%d): double writeback with distinct regs (%d,%d): "
> +              "punting\n",
> +              insns[0]->uid (), insns[1]->uid (),
> +              base_defs[0]->regno (), base_defs[1]->regno ());
> +      return writeback;
> +    }
> +
> +  if (base_defs[0] && base_defs[1]
> +      && base_defs[0]->regno () == base_defs[1]->regno ())
> +    {
> +      // Easy case: insns already share the same base reg.
> +      base_cands.quick_push (base_defs[0]);
> +      return writeback;
> +    }
> +
> +  // Otherwise, we know that one of the bases must change.
> +  //
> +  // Note that if there is writeback we must use the writeback base
> +  // (we know now there is exactly one).
> +  for (int i = 0; i < 2; i++)
> +    if (base_defs[i] && (!writeback || (writeback & (1 << i))))
> +      base_cands.quick_push (base_cand { base_defs[i], i });
> +
> +  return writeback;
> +}
> +
> +void
> +dump_insn_list (FILE *f, const insn_list_t &l)
> +{
> +  fprintf (f, "(");
> +
> +  auto i = l.begin ();
> +  auto end = l.end ();
> +
> +  if (i != end)
> +    fprintf (f, "%d", (*i)->uid ());
> +  i++;
> +
> +  for (; i != end; i++)
> +    fprintf (f, ", %d", (*i)->uid ());
> +
> +  fprintf (f, ")");
> +}
> diff --git a/gcc/pair-fusion.cc b/gcc/pair-fusion.cc
> new file mode 100644
> index 00000000000..02899410183
> --- /dev/null
> +++ b/gcc/pair-fusion.cc
> @@ -0,0 +1,1225 @@
> +// Generic code for Pair MEM  fusion optimization pass.
> +// Copyright (C) 2023-2024 Free Software Foundation, Inc.
> +//
> +// This file is part of GCC.
> +//
> +// GCC is free software; you can redistribute it and/or modify it
> +// under the terms of the GNU General Public License as published by
> +// the Free Software Foundation; either version 3, or (at your option)
> +// any later version.
> +//
> +// GCC is distributed in the hope that it will be useful, but
> +// WITHOUT ANY WARRANTY; without even the implied warranty of
> +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
> +// General Public License for more details.
> +//
> +// You should have received a copy of the GNU General Public License
> +// along with GCC; see the file COPYING3.  If not see
> +// <http://www.gnu.org/licenses/>.
> +
> +#include "pair-fusion-base.h"
> +
> +splay_tree_node<access_record *> *
> +pair_fusion::node_alloc (access_record *access)
> +{
> +  using T = splay_tree_node<access_record *>;
> +  void *addr = obstack_alloc (&m_obstack, sizeof (T));
> +  return new (addr) T (access);
> +}
> +// Given a candidate access INSN (with mem MEM), see if it has a suitable
> +// MEM_EXPR base (i.e. a tree decl) relative to which we can track the 
> access.
> +// LFS is used as part of the key to the hash table, see track_access.
> +bool
> +pair_fusion::track_via_mem_expr (insn_info *insn, rtx mem, lfs_fields lfs)
> +{
> +  if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem))
> +    return false;
> +
> +  poly_int64 offset;
> +  tree base_expr = get_addr_base_and_unit_offset (MEM_EXPR (mem),
> +                                               &offset);
> +  if (!base_expr || !DECL_P (base_expr))
> +    return false;
> +
> +  offset += MEM_OFFSET (mem);
> +
> +  const machine_mode mem_mode = GET_MODE (mem);
> +  const HOST_WIDE_INT mem_size = GET_MODE_SIZE (mem_mode).to_constant ();
> +
> +  // Punt on misaligned offsets.  PAIR MEM  instructions require offsets to 
> be a
> +  // multiple of the access size, and we believe that misaligned offsets on
> +  // MEM_EXPR bases are likely to lead to misaligned offsets w.r.t. RTL 
> bases.
> +  if (!multiple_p (offset, mem_size))
> +    return false;
> +
> +  const auto key = std::make_pair (base_expr, encode_lfs (lfs));
> +  access_group &group = expr_map.get_or_insert (key, NULL);
> +  auto alloc = [&](access_record *access) { return node_alloc (access); };
> +  group.track (alloc, offset, insn);
> +
> +  if (dump_file)
> +    {
> +      fprintf (dump_file, "[bb %u] tracking insn %d via ",
> +            m_bb->index (), insn->uid ());
> +      print_node_brief (dump_file, "mem expr", base_expr, 0);
> +      fprintf (dump_file, " [L=%d FP=%d, %smode, off=",
> +            lfs.load_p, lfs.fpsimd_p, mode_name[mem_mode]);
> +      print_dec (offset, dump_file);
> +      fprintf (dump_file, "]\n");
> +    }
> +
> +  return true;
> +}
> +// Main function to begin pair discovery.  Given a memory access INSN,
> +// determine whether it could be a candidate for fusing into an pair mem,
> +// and if so, track it in the appropriate data structure for this basic
> +// block.  LOAD_P is true if the access is a load, and MEM is the mem
> +// rtx that occurs in INSN.
> +void
> +pair_fusion::track_access (insn_info *insn, bool load_p, rtx mem)
> +{
> +  // We can't combine volatile MEMs, so punt on these.
> +  if (MEM_VOLATILE_P (mem))
> +    return;
> +
> +  // Ignore writeback accesses if the param says to do so
> +  if (pair_is_writeback ()
> +      && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
> +    return;
> +
> +  const machine_mode mem_mode = GET_MODE (mem);
> +
> +  if (!pair_operand_mode_ok_p (mem_mode))
> +    return;
> +
> +  rtx reg_op = XEXP (PATTERN (insn->rtl ()), !load_p);
> +
> +  if (pair_check_register_operand (load_p, reg_op, mem_mode))
> +    return;
> +  // We want to segregate FP/SIMD accesses from GPR accesses.
> +  //
> +  // Before RA, we use the modes, noting that stores of constant zero
> +  // operands use GPRs (even in non-integer modes).  After RA, we use
> +  // the hard register numbers.
> + const bool fpsimd_op_p = is_fpsimd_op_p (reg_op, mem_mode, load_p);
> +  // Note pair_operand_mode_ok_p already rejected VL modes.
> +  const HOST_WIDE_INT mem_size = GET_MODE_SIZE (mem_mode).to_constant ();
> +  const lfs_fields lfs = { load_p, fpsimd_op_p, mem_size };
> +
> +  if (track_via_mem_expr (insn, mem, lfs))
> +    return;
> +
> +  poly_int64 mem_off;
> +  rtx addr = XEXP (mem, 0);
> +  const bool autoinc_p = GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC;
> +  rtx base = pair_mem_strip_offset (mem, &mem_off);
> +  if (!REG_P (base))
> +    return;
> +
> +  // Need to calculate two (possibly different) offsets:
> +  //  - Offset at which the access occurs.
> +  //  - Offset of the new base def.
> +  poly_int64 access_off;
> +  if (autoinc_p && any_post_modify_p (addr))
> +    access_off = 0;
> +  else
> +    access_off = mem_off;
> +
> +  poly_int64 new_def_off = mem_off;
> +
> +  // Punt on accesses relative to eliminable regs.  Since we don't know the
> +  // elimination offset pre-RA, we should postpone forming pairs on such
> +  // accesses until after RA.
> +  //
> +  // As it stands, addresses with offsets in range for LDR but not
> +  // in range for PAIR MEM LOAD STORE  are currently reloaded inefficiently,
> +  // ending up with a separate base register for each pair.
> +  //
> +  // In theory LRA should make use of
> +  // targetm.legitimize_address_displacement to promote sharing of
> +  // bases among multiple (nearby) address reloads, but the current
> +  // LRA code returns early from process_address_1 for operands that
> +  // satisfy "m", even if they don't satisfy the real (relaxed) address
> +  // constraint; this early return means we never get to the code
> +  // that calls targetm.legitimize_address_displacement.
> +  //
> +  // So for now, it's better to punt when we can't be sure that the
> +  // offset is in range for PAIR MEM LOAD STORE.  Out-of-range cases can 
> then be
> +  // handled after RA by the out-of-range PAIR MEM  peepholes.  Eventually, 
> it
> +  // would be nice to handle known out-of-range opportunities in the
> +  // pass itself (for stack accesses, this would be in the post-RA pass).
> +  if (!reload_completed
> +      && (REGNO (base) == FRAME_POINTER_REGNUM
> +       || REGNO (base) == ARG_POINTER_REGNUM))
> +    return;
> +
> +  // Now need to find def of base register.
> +  use_info *base_use = find_access (insn->uses (), REGNO (base));
> +  gcc_assert (base_use);
> +  def_info *base_def = base_use->def ();
> +  if (!base_def)
> +    {
> +      if (dump_file)
> +     fprintf (dump_file,
> +              "base register (regno %d) of insn %d is undefined",
> +              REGNO (base), insn->uid ());
> +      return;
> +    }
> +
> +  alt_base *canon_base = canon_base_map.get (base_def);
> +  if (canon_base)
> +    {
> +      // Express this as the combined offset from the canonical base.
> +      base_def = canon_base->base;
> +      new_def_off += canon_base->offset;
> +      access_off += canon_base->offset;
> +    }
> +
> +  if (autoinc_p)
> +    {
> +      auto def = find_access (insn->defs (), REGNO (base));
> +      gcc_assert (def);
> +
> +      // Record that DEF = BASE_DEF + MEM_OFF.
> +      if (dump_file)
> +     {
> +       pretty_printer pp;
> +       pp_access (&pp, def, 0);
> +       pp_string (&pp, " = ");
> +       pp_access (&pp, base_def, 0);
> +       fprintf (dump_file, "[bb %u] recording %s + ",
> +                m_bb->index (), pp_formatted_text (&pp));
> +       print_dec (new_def_off, dump_file);
> +       fprintf (dump_file, "\n");
> +     }
> +
> +      alt_base base_rec { base_def, new_def_off };
> +      if (canon_base_map.put (def, base_rec))
> +     gcc_unreachable (); // Base defs should be unique.
> +    }
> +
> +  // Punt on misaligned offsets.  PAIR MEM  require offsets to be a multiple 
> of
> +  // the access size.
> +  if (!multiple_p (mem_off, mem_size))
> +    return;
> +
> +  const auto key = std::make_pair (base_def, encode_lfs (lfs));
> +  access_group &group = def_map.get_or_insert (key, NULL);
> +  auto alloc = [&](access_record *access) { return node_alloc (access); };
> +  group.track (alloc, access_off, insn);
> +
> +  if (dump_file)
> +    {
> +      pretty_printer pp;
> +      pp_access (&pp, base_def, 0);
> +
> +      fprintf (dump_file, "[bb %u] tracking insn %d via %s",
> +            m_bb->index (), insn->uid (), pp_formatted_text (&pp));
> +      fprintf (dump_file,
> +            " [L=%d, WB=%d, FP=%d, %smode, off=",
> +            lfs.load_p, autoinc_p, lfs.fpsimd_p, mode_name[mem_mode]);
> +      print_dec (access_off, dump_file);
> +      fprintf (dump_file, "]\n");
> +    }
> +}
> +
> +// We just emitted a tombstone with uid UID, track it in a bitmap for
> +// this BB so we can easily identify it later when cleaning up tombstones.
> +void
> +pair_fusion::track_tombstone (int uid)
> +{
> +  if (!m_emitted_tombstone)
> +    {
> +      // Lazily initialize the bitmap for tracking tombstone insns.
> +      bitmap_obstack_initialize (&m_bitmap_obstack);
> +      bitmap_initialize (&m_tombstone_bitmap, &m_bitmap_obstack);
> +      m_emitted_tombstone = true;
> +    }
> +
> +  if (!bitmap_set_bit (&m_tombstone_bitmap, uid))
> +    gcc_unreachable (); // Bit should have changed.
> +}
> +
> +// Given two adjacent memory accesses of the same size, I1 and I2, try
> +// and see if we can merge them into a pair mem load and store.
> +//
> +// ACCESS_SIZE gives the (common) size of a single access, LOAD_P is true
> +// if the accesses are both loads, otherwise they are both stores.
> +bool
> +pair_fusion::try_fuse_pair (bool load_p, unsigned access_size,
> +                         insn_info *i1, insn_info *i2)
> +{
> +  if (dump_file)
> +    fprintf (dump_file, "analyzing pair (load=%d): (%d,%d)\n",
> +          load_p, i1->uid (), i2->uid ());
> +
> +  insn_info *insns[2];
> +  bool reversed = false;
> +  if (*i1 < *i2)
> +    {
> +      insns[0] = i1;
> +      insns[1] = i2;
> +    }
> +  else
> +    {
> +      insns[0] = i2;
> +      insns[1] = i1;
> +      reversed = true;
> +    }
> +
> +  rtx cand_mems[2];
> +  rtx reg_ops[2];
> +  rtx pats[2];
> +  for (int i = 0; i < 2; i++)
> +    {
> +      pats[i] = PATTERN (insns[i]->rtl ());
> +      cand_mems[i] = XEXP (pats[i], load_p);
> +      reg_ops[i] = XEXP (pats[i], !load_p);
> +    }
> +
> +  if (!load_p && !fuseable_store_p (i1, i2))
> +    {
> +      if (dump_file)
> +     fprintf (dump_file,
> +              "punting on store-mem-pairs due to non fuseable cand 
> (%d,%d)\n",
> +              insns[0]->uid (), insns[1]->uid ());
> +      return false;
> +    }
> +
> +
> +  if (load_p && reg_overlap_mentioned_p (reg_ops[0], reg_ops[1]))
> +    {
> +      if (dump_file)
> +     fprintf (dump_file,
> +              "punting on pair mem load  due to reg conflcits (%d,%d)\n",
> +              insns[0]->uid (), insns[1]->uid ());
> +      return false;
> +    }
> +
> +  if (cfun->can_throw_non_call_exceptions
> +      && find_reg_note (insns[0]->rtl (), REG_EH_REGION, NULL_RTX)
> +      && find_reg_note (insns[1]->rtl (), REG_EH_REGION, NULL_RTX))
> +    {
> +      if (dump_file)
> +     fprintf (dump_file,
> +              "can't combine insns with EH side effects (%d,%d)\n",
> +              insns[0]->uid (), insns[1]->uid ());
> +      return false;
> +    }
> +
> +  auto_vec<base_cand, 2> base_cands (2);
> +
> +  int writeback = get_viable_bases (insns, base_cands, cand_mems,
> +                                 access_size, reversed);
> +  if (base_cands.is_empty ())
> +    {
> +      if (dump_file)
> +     fprintf (dump_file, "no viable base for pair (%d,%d)\n",
> +              insns[0]->uid (), insns[1]->uid ());
> +      return false;
> +    }
> +
> +  // Punt on frame-related insns with writeback.  We probably won't see
> +  // these in practice, but this is conservative and ensures we don't
> +  // have to worry about these later on.
> +  if (writeback && (RTX_FRAME_RELATED_P (i1->rtl ())
> +                 || RTX_FRAME_RELATED_P (i2->rtl ())))
> +    {
> +      if (dump_file)
> +     fprintf (dump_file,
> +              "rejecting pair (%d,%d): frame-related insn with writeback\n",
> +              i1->uid (), i2->uid ());
> +      return false;
> +    }
> +
> +  rtx *ignore = &XEXP (pats[1], load_p);
> +  for (auto use : insns[1]->uses ())
> +    if (!use->is_mem ()
> +     && refers_to_regno_p (use->regno (), use->regno () + 1, pats[1], ignore)
> +     && use->def () && use->def ()->insn () == insns[0])
> +      {
> +     // N.B. we allow a true dependence on the base address, as this
> +     // happens in the case of auto-inc accesses.  Consider a post-increment
> +     // load followed by a regular indexed load, for example.
> +     if (dump_file)
> +       fprintf (dump_file,
> +                "%d has non-address true dependence on %d, rejecting pair\n",
> +                insns[1]->uid (), insns[0]->uid ());
> +     return false;
> +      }
> +
> +  unsigned i = 0;
> +  while (i < base_cands.length ())
> +    {
> +      base_cand &cand = base_cands[i];
> +
> +      rtx *ignore[2] = {};
> +      for (int j = 0; j < 2; j++)
> +     if (cand.from_insn == !j)
> +       ignore[j] = &XEXP (cand_mems[j], 0);
> +
> +      insn_info *h = first_hazard_after (insns[0], ignore[0]);
> +      if (h && *h < *insns[1])
> +     cand.hazards[0] = h;
> +
> +      h = latest_hazard_before (insns[1], ignore[1]);
> +      if (h && *h > *insns[0])
> +     cand.hazards[1] = h;
> +
> +      if (!cand.viable ())
> +     {
> +       if (dump_file)
> +         fprintf (dump_file,
> +                  "pair (%d,%d): rejecting base %d due to dataflow "
> +                  "hazards (%d,%d)\n",
> +                  insns[0]->uid (),
> +                  insns[1]->uid (),
> +                  cand.def->regno (),
> +                  cand.hazards[0]->uid (),
> +                  cand.hazards[1]->uid ());
> +
> +       base_cands.ordered_remove (i);
> +     }
> +      else
> +     i++;
> +    }
> +
> +  if (base_cands.is_empty ())
> +    {
> +      if (dump_file)
> +     fprintf (dump_file,
> +              "can't form pair (%d,%d) due to dataflow hazards\n",
> +              insns[0]->uid (), insns[1]->uid ());
> +      return false;
> +    }
> +
> +  insn_info *alias_hazards[4] = {};
> +
> +  // First def of memory after the first insn, and last def of memory
> +  // before the second insn, respectively.
> +  def_info *mem_defs[2] = {};
> +  if (load_p)
> +    {
> +      if (!MEM_READONLY_P (cand_mems[0]))
> +     {
> +       mem_defs[0] = memory_access (insns[0]->uses ())->def ();
> +       gcc_checking_assert (mem_defs[0]);
> +       mem_defs[0] = mem_defs[0]->next_def ();
> +     }
> +      if (!MEM_READONLY_P (cand_mems[1]))
> +     {
> +       mem_defs[1] = memory_access (insns[1]->uses ())->def ();
> +       gcc_checking_assert (mem_defs[1]);
> +     }
> +    }
> +  else
> +    {
> +      mem_defs[0] = memory_access (insns[0]->defs ())->next_def ();
> +      mem_defs[1] = memory_access (insns[1]->defs ())->prev_def ();
> +      gcc_checking_assert (mem_defs[0]);
> +      gcc_checking_assert (mem_defs[1]);
> +    }
> +
> +  auto tombstone_p = [&](insn_info *insn) -> bool {
> +    return m_emitted_tombstone
> +        && bitmap_bit_p (&m_tombstone_bitmap, insn->uid ());
> +  };
> +
> +  store_walker<false, decltype(tombstone_p)>
> +    forward_store_walker (mem_defs[0], cand_mems[0], insns[1], tombstone_p);
> +
> +  store_walker<true, decltype(tombstone_p)>
> +    backward_store_walker (mem_defs[1], cand_mems[1], insns[0], tombstone_p);
> +
> +  alias_walker *walkers[4] = {};
> +  if (mem_defs[0])
> +    walkers[0] = &forward_store_walker;
> +  if (mem_defs[1])
> +    walkers[1] = &backward_store_walker;
> +
> +  if (load_p && (mem_defs[0] || mem_defs[1]))
> +    do_alias_analysis (alias_hazards, walkers, load_p);
> +  else
> +    {
> +      // We want to find any loads hanging off the first store.
> +      mem_defs[0] = memory_access (insns[0]->defs ());
> +      load_walker<false> forward_load_walker (mem_defs[0], insns[0], 
> insns[1]);
> +      load_walker<true> backward_load_walker (mem_defs[1], insns[1], 
> insns[0]);
> +      walkers[2] = &forward_load_walker;
> +      walkers[3] = &backward_load_walker;
> +      do_alias_analysis (alias_hazards, walkers, load_p);
> +      // Now consolidate hazards back down.
> +      if (alias_hazards[2]
> +       && (!alias_hazards[0] || (*alias_hazards[2] < *alias_hazards[0])))
> +     alias_hazards[0] = alias_hazards[2];
> +
> +      if (alias_hazards[3]
> +       && (!alias_hazards[1] || (*alias_hazards[3] > *alias_hazards[1])))
> +     alias_hazards[1] = alias_hazards[3];
> +    }
> +
> +  if (alias_hazards[0] && alias_hazards[1]
> +      && *alias_hazards[0] <= *alias_hazards[1])
> +    {
> +      if (dump_file)
> +     fprintf (dump_file,
> +              "cannot form pair (%d,%d) due to alias conflicts (%d,%d)\n",
> +              i1->uid (), i2->uid (),
> +              alias_hazards[0]->uid (), alias_hazards[1]->uid ());
> +      return false;
> +    }
> +
> +  // Now narrow the hazards on each base candidate using
> +  // the alias hazards.
> +  i = 0;
> +  while (i < base_cands.length ())
> +    {
> +      base_cand &cand = base_cands[i];
> +      if (alias_hazards[0] && (!cand.hazards[0]
> +                            || *alias_hazards[0] < *cand.hazards[0]))
> +     cand.hazards[0] = alias_hazards[0];
> +      if (alias_hazards[1] && (!cand.hazards[1]
> +                            || *alias_hazards[1] > *cand.hazards[1]))
> +     cand.hazards[1] = alias_hazards[1];
> +
> +      if (cand.viable ())
> +     i++;
> +      else
> +     {
> +       if (dump_file)
> +         fprintf (dump_file, "pair (%d,%d): rejecting base %d due to "
> +                             "alias/dataflow hazards (%d,%d)",
> +                             insns[0]->uid (), insns[1]->uid (),
> +                             cand.def->regno (),
> +                             cand.hazards[0]->uid (),
> +                             cand.hazards[1]->uid ());
> +
> +       base_cands.ordered_remove (i);
> +     }
> +    }
> +
> +  if (base_cands.is_empty ())
> +    {
> +      if (dump_file)
> +     fprintf (dump_file,
> +              "cannot form pair (%d,%d) due to alias/dataflow hazards",
> +              insns[0]->uid (), insns[1]->uid ());
> +
> +      return false;
> +    }
> +
> +  base_cand *base = &base_cands[0];
> +  if (base_cands.length () > 1)
> +    {
> +      // If there are still multiple viable bases, it makes sense
> +      // to choose one that allows us to reduce register pressure,
> +      // for loads this means moving further down, for stores this
> +      // means moving further up.
> +      gcc_checking_assert (base_cands.length () == 2);
> +      const int hazard_i = !load_p;
> +      if (base->hazards[hazard_i])
> +     {
> +       if (!base_cands[1].hazards[hazard_i])
> +         base = &base_cands[1];
> +       else if (load_p
> +                && *base_cands[1].hazards[hazard_i]
> +                   > *(base->hazards[hazard_i]))
> +         base = &base_cands[1];
> +       else if (!load_p
> +                && *base_cands[1].hazards[hazard_i]
> +                   < *(base->hazards[hazard_i]))
> +         base = &base_cands[1];
> +     }
> +    }
> +
> +  // Otherwise, hazards[0] > hazards[1].
> +  // Pair can be formed anywhere in (hazards[1], hazards[0]).
> +  insn_range_info range (insns[0], insns[1]);
> +  if (base->hazards[1])
> +    range.first = base->hazards[1];
> +  if (base->hazards[0])
> +    range.last = base->hazards[0]->prev_nondebug_insn ();
> +
> +  // If the second insn can throw, narrow the move range to exactly that 
> insn.
> +  // This prevents us trying to move the second insn from the end of the BB.
> +  if (cfun->can_throw_non_call_exceptions
> +      && find_reg_note (insns[1]->rtl (), REG_EH_REGION, NULL_RTX))
> +    {
> +      gcc_assert (range.includes (insns[1]));
> +      range = insn_range_info (insns[1]);
> +    }
> +
> +  // Placement strategy: push loads down and pull stores up, this should
> +  // help register pressure by reducing live ranges.
> +  if (load_p)
> +    range.first = range.last;
> +  else
> +    range.last = range.first;
> +
> +  if (dump_file)
> +    {
> +      auto print_hazard = [](insn_info *i)
> +     {
> +       if (i)
> +         fprintf (dump_file, "%d", i->uid ());
> +       else
> +         fprintf (dump_file, "-");
> +     };
> +      auto print_pair = [print_hazard](insn_info **i)
> +     {
> +       print_hazard (i[0]);
> +       fprintf (dump_file, ",");
> +       print_hazard (i[1]);
> +     };
> +
> +      fprintf (dump_file, "fusing pair [L=%d] (%d,%d), base=%d, hazards: (",
> +           load_p, insns[0]->uid (), insns[1]->uid (),
> +           base->def->regno ());
> +      print_pair (base->hazards);
> +      fprintf (dump_file, "), move_range: (%d,%d)\n",
> +            range.first->uid (), range.last->uid ());
> +    }
> +
> +  return fuse_pair (load_p, access_size, writeback,
> +                 i1, i2, *base, range);
> +}
> +
> +
> +// LEFT_LIST and RIGHT_LIST are lists of candidate instructions where all 
> insns
> +// in LEFT_LIST are known to be adjacent to those in RIGHT_LIST.
> +//
> +// This function traverses the resulting 2D matrix of possible pair 
> candidates
> +// and attempts to merge them into pairs.
> +//
> +// The algorithm is straightforward: if we consider a combined list of
> +// candidates X obtained by merging LEFT_LIST and RIGHT_LIST in program 
> order,
> +// then we advance through X until we reach a crossing point (where X[i] and
> +// X[i+1] come from different source lists).
> +//
> +// At this point we know X[i] and X[i+1] are adjacent accesses, and we try to
> +// fuse them into a pair.  If this succeeds, we remove X[i] and X[i+1] from
> +// their original lists and continue as above.
> +//
> +// In the failure case, we advance through the source list containing X[i] 
> and
> +// continue as above (proceeding to the next crossing point).
> +//
> +// The rationale for skipping over groups of consecutive candidates from the
> +// same source list is as follows:
> +//
> +// In the store case, the insns in the group can't be re-ordered over each
> +// other as they are guaranteed to store to the same location, so we're
> +// guaranteed not to lose opportunities by doing this.
> +//
> +// In the load case, subsequent loads from the same location are either
> +// redundant (in which case they should have been cleaned up by an earlier
> +// optimization pass) or there is an intervening aliasing hazard, in which 
> case
> +// we can't re-order them anyway, so provided earlier passes have cleaned up
> +// redundant loads, we shouldn't miss opportunities by doing this.
> +void
> +pair_fusion::merge_pairs (insn_list_t &left_list,
> +                       insn_list_t &right_list,
> +                       bool load_p,
> +                       unsigned access_size)
> +{
> +  if (dump_file)
> +    {
> +      fprintf (dump_file, "merge_pairs [L=%d], cand vecs ", load_p);
> +      dump_insn_list (dump_file, left_list);
> +      fprintf (dump_file, " x ");
> +      dump_insn_list (dump_file, right_list);
> +      fprintf (dump_file, "\n");
> +    }
> +
> +  auto iter_l = left_list.begin ();
> +  auto iter_r = right_list.begin ();
> +
> +  while (iter_l != left_list.end () && iter_r != right_list.end ())
> +    {
> +      auto next_l = std::next (iter_l);
> +      auto next_r = std::next (iter_r);
> +      if (**iter_l < **iter_r
> +       && next_l != left_list.end ()
> +       && **next_l < **iter_r)
> +     iter_l = next_l;
> +      else if (**iter_r < **iter_l
> +            && next_r != right_list.end ()
> +            && **next_r < **iter_l)
> +     iter_r = next_r;
> +      else if (try_fuse_pair (load_p, access_size, *iter_l, *iter_r))
> +     {
> +       left_list.erase (iter_l);
> +       iter_l = next_l;
> +       right_list.erase (iter_r);
> +       iter_r = next_r;
> +     }
> +      else if (**iter_l < **iter_r)
> +     iter_l = next_l;
> +      else
> +     iter_r = next_r;
> +    }
> +}
> +// If we emitted tombstone insns for this BB, iterate through the BB
> +// and remove all the tombstone insns, being sure to reparent any uses
> +// of mem to previous defs when we do this.
> +void
> +pair_fusion::cleanup_tombstones ()
> +{
> +  // No need to do anything if we didn't emit a tombstone insn for this BB.
> +  if (!m_emitted_tombstone)
> +    return;
> +
> +  insn_info *insn = m_bb->head_insn ();
> +  while (insn)
> +    {
> +      insn_info *next = insn->next_nondebug_insn ();
> +      if (!insn->is_real ()
> +       || !bitmap_bit_p (&m_tombstone_bitmap, insn->uid ()))
> +     {
> +       insn = next;
> +       continue;
> +     }
> +
> +      auto def = memory_access (insn->defs ());
> +      auto set = dyn_cast<set_info *> (def);
> +      if (set && set->has_any_uses ())
> +     {
> +       def_info *prev_def = def->prev_def ();
> +       auto prev_set = dyn_cast<set_info *> (prev_def);
> +       if (!prev_set)
> +         gcc_unreachable ();
> +
> +       while (set->first_use ())
> +         crtl->ssa->reparent_use (set->first_use (), prev_set);
> +     }
> +
> +      // Now set has no uses, we can delete it.
> +      insn_change change (insn, insn_change::DELETE);
> +      crtl->ssa->change_insn (change);
> +      insn = next;
> +    }
> +}
> +
> +template<typename Map>
> +void
> +pair_fusion::traverse_base_map (Map &map)
> +{
> +  for (auto kv : map)
> +    {
> +      const auto &key = kv.first;
> +      auto &value = kv.second;
> +      transform_for_base (key.second, value);
> +    }
> +}
> +
> +void
> +pair_fusion::transform ()
> +{
> +  traverse_base_map (expr_map);
> +  traverse_base_map (def_map);
> +}
> +
> +// Process our alias_walkers in a round-robin fashion, proceeding until
> +// nothing more can be learned from alias analysis.
> +//
> +// We try to maintain the invariant that if a walker becomes invalid, we
> +// set its pointer to null.
> +void
> +pair_fusion::do_alias_analysis (insn_info *alias_hazards[4],
> +                alias_walker *walkers[4],
> +                bool load_p)
> +{
> +  const int n_walkers = 2 + (2 * !load_p);
> +  int budget = pair_mem_alias_check_limit();
> +
> +  auto next_walker = [walkers,n_walkers](int current) -> int {
> +    for (int j = 1; j <= n_walkers; j++)
> +      {
> +     int idx = (current + j) % n_walkers;
> +     if (walkers[idx])
> +       return idx;
> +      }
> +    return -1;
> +  };
> +
> +  int i = -1;
> +  for (int j = 0; j < n_walkers; j++)
> +    {
> +      alias_hazards[j] = nullptr;
> +      if (!walkers[j])
> +     continue;
> +
> +      if (!walkers[j]->valid ())
> +     walkers[j] = nullptr;
> +      else if (i == -1)
> +     i = j;
> +    }
> +
> +  while (i >= 0)
> +    {
> +      int insn_i = i % 2;
> +      int paired_i = (i & 2) + !insn_i;
> +      int pair_fst = (i & 2);
> +      int pair_snd = (i & 2) + 1;
> +
> +      if (walkers[i]->conflict_p (budget))
> +     {
> +       alias_hazards[i] = walkers[i]->insn ();
> +
> +       // We got an aliasing conflict for this {load,store} walker,
> +       // so we don't need to walk any further.
> +       walkers[i] = nullptr;
> +
> +       // If we have a pair of alias conflicts that prevent
> +       // forming the pair, stop.  There's no need to do further
> +       // analysis.
> +       if (alias_hazards[paired_i]
> +           && (*alias_hazards[pair_fst] <= *alias_hazards[pair_snd]))
> +         return;
> +
> +       if (!load_p)
> +         {
> +           int other_pair_fst = (pair_fst ? 0 : 2);
> +           int other_paired_i = other_pair_fst + !insn_i;
> +
> +           int x_pair_fst = (i == pair_fst) ? i : other_paired_i;
> +           int x_pair_snd = (i == pair_fst) ? other_paired_i : i;
> +
> +           // Similarly, handle the case where we have a {load,store}
> +           // or {store,load} alias hazard pair that prevents forming
> +           // the pair.
> +           if (alias_hazards[other_paired_i]
> +               && *alias_hazards[x_pair_fst] <= *alias_hazards[x_pair_snd])
> +             return;
> +         }
> +     }
> +
> +      if (walkers[i])
> +     {
> +       walkers[i]->advance ();
> +
> +       if (!walkers[i]->valid ())
> +         walkers[i] = nullptr;
> +     }
> +
> +      i = next_walker (i);
> +    }
> +}
> +
> +// Try and actually fuse the pair given by insns I1 and I2.
> +//
> +// Here we've done enough analysis to know this is safe, we only
> +// reject the pair at this stage if either the tuning policy says to,
> +// or recog fails on the final pair insn.
> +//
> +// LOAD_P is true for loads, ACCESS_SIZE gives the access size of each
> +// candidate insn.  Bit i of WRITEBACK is set if the ith insn (in program
> +// order) uses writeback.
> +//
> +// BASE gives the chosen base candidate for the pair and MOVE_RANGE is
> +// a singleton range which says where to place the pair.
> +bool
> +pair_fusion::fuse_pair (bool load_p,
> +                     unsigned access_size,
> +                     int writeback,
> +                     insn_info *i1, insn_info *i2,
> +                     base_cand &base,
> +                     const insn_range_info &move_range)
> +{
> +  auto attempt = crtl->ssa->new_change_attempt ();
> +
> +  auto make_change = [&attempt](insn_info *insn)
> +    {
> +      return crtl->ssa->change_alloc<insn_change> (attempt, insn);
> +    };
> +  auto make_delete = [&attempt](insn_info *insn)
> +    {
> +      return crtl->ssa->change_alloc<insn_change> (attempt,
> +                                                insn,
> +                                                insn_change::DELETE);
> +    };
> +
> +  if (*i1 > *i2)
> +    return false;
> +
> +  insn_info *first = (*i1 < *i2) ? i1 : i2;
> +  insn_info *second = (first == i1) ? i2 : i1;
> +
> +  insn_info *pair_dst = move_range.singleton ();
> +  gcc_assert (pair_dst);
> +
> +  insn_info *insns[2] = { first, second };
> +
> +  auto_vec<insn_change *> changes;
> +  auto_vec<int, 2> tombstone_uids (2);
> +
> +  rtx pats[2] = {
> +    PATTERN (first->rtl ()),
> +    PATTERN (second->rtl ())
> +  };
> +
> +  // Make copies of the patterns as we might need to refer to the original 
> RTL
> +  // later, for example when updating debug uses (which is after we've 
> updated
> +  // one or both of the patterns in the candidate insns).
> +  rtx orig_rtl[2];
> +  for (int i = 0; i < 2; i++)
> +    orig_rtl[i] = copy_rtx (pats[i]);
> +
> +  use_array input_uses[2] = { first->uses (), second->uses () };
> +  def_array input_defs[2] = { first->defs (), second->defs () };
> +
> +  int changed_insn = -1;
> +  if (base.from_insn != -1)
> +    {
> +      // If we're not already using a shared base, we need
> +      // to re-write one of the accesses to use the base from
> +      // the other insn.
> +      gcc_checking_assert (base.from_insn == 0 || base.from_insn == 1);
> +      changed_insn = !base.from_insn;
> +
> +      rtx base_pat = pats[base.from_insn];
> +      rtx change_pat = pats[changed_insn];
> +      rtx base_mem = XEXP (base_pat, load_p);
> +      rtx change_mem = XEXP (change_pat, load_p);
> +
> +      const bool lower_base_p = (insns[base.from_insn] == i1);
> +      HOST_WIDE_INT adjust_amt = access_size;
> +      if (!lower_base_p)
> +     adjust_amt *= -1;
> +
> +      rtx change_reg = XEXP (change_pat, !load_p);
> +      machine_mode mode_for_mem = GET_MODE (change_mem);
> +      rtx effective_base = drop_writeback (base_mem);
> +      rtx new_mem = adjust_address_nv (effective_base,
> +                                    mode_for_mem,
> +                                    adjust_amt);
> +      rtx new_set = load_p
> +     ? gen_rtx_SET (change_reg, new_mem)
> +     : gen_rtx_SET (new_mem, change_reg);
> +
> +      pats[changed_insn] = new_set;
> +
> +      auto keep_use = [&](use_info *u)
> +     {
> +       return refers_to_regno_p (u->regno (), u->regno () + 1,
> +                                 change_pat, &XEXP (change_pat, load_p));
> +     };
> +
> +      // Drop any uses that only occur in the old address.
> +      input_uses[changed_insn] = filter_accesses (attempt,
> +                                               input_uses[changed_insn],
> +                                               keep_use);
> +    }
> +
> +  rtx writeback_effect = NULL_RTX;
> +  if (writeback)
> +    writeback_effect = extract_writebacks (load_p, pats, changed_insn);
> +
> +  const auto base_regno = base.def->regno ();
> +
> +  if (base.from_insn == -1 && (writeback & 1))
> +    {
> +      // If the first of the candidate insns had a writeback form, we'll 
> need to
> +      // drop the use of the updated base register from the second insn's 
> uses.
> +      //
> +      // N.B. we needn't worry about the base register occurring as a store
> +      // operand, as we checked that there was no non-address true dependence
> +      // between the insns in try_fuse_pair.
> +      gcc_checking_assert (find_access (input_uses[1], base_regno));
> +      input_uses[1] = check_remove_regno_access (attempt,
> +                                              input_uses[1],
> +                                              base_regno);
> +    }
> +
> +  // Go through and drop uses that only occur in register notes,
> +  // as we won't be preserving those.
> +  for (int i = 0; i < 2; i++)
> +    {
> +      auto rti = insns[i]->rtl ();
> +      if (!REG_NOTES (rti))
> +     continue;
> +
> +      input_uses[i] = remove_note_accesses (attempt, input_uses[i]);
> +    }
> +
> +  // Edge case: if the first insn is a writeback load and the
> +  // second insn is a non-writeback load which transfers into the base
> +  // register, then we should drop the writeback altogether as the
> +  // update of the base register from the second load should prevail.
> +  //
> +  // For example:
> +  //   ldr x2, [x1], #8
> +  //   ldr x1, [x1]
> +  //   -->
> +  //   ldp x2, x1, [x1]
> +  if (writeback == 1
> +      && load_p
> +      && find_access (input_defs[1], base_regno))
> +    {
> +      if (dump_file)
> +     fprintf (dump_file,
> +              "  pair_mem: i%d has wb but subsequent i%d has non-wb "
> +              "update of base (r%d), dropping wb\n",
> +              insns[0]->uid (), insns[1]->uid (), base_regno);
> +      gcc_assert (writeback_effect);
> +      writeback_effect = NULL_RTX;
> +    }
> +
> +  // So far the patterns have been in instruction order,
> +  // now we want them in offset order.
> +  if (i1 != first)
> +    std::swap (pats[0], pats[1]);
> +
> +  poly_int64 offsets[2];
> +  for (int i = 0; i < 2; i++)
> +    {
> +      rtx mem = XEXP (pats[i], load_p);
> +      gcc_checking_assert (MEM_P (mem));
> +      rtx base = strip_offset (XEXP (mem, 0), offsets + i);
> +      gcc_checking_assert (REG_P (base));
> +      gcc_checking_assert (base_regno == REGNO (base));
> +    }
> +
> +  // If either of the original insns had writeback, but the resulting pair 
> insn
> +  // does not (can happen e.g. in the pair mem  edge case above, or if the 
> writeback
> +  // effects cancel out), then drop the def(s) of the base register as
> +  // appropriate.
> +  //
> +  // Also drop the first def in the case that both of the original insns had
> +  // writeback.  The second def could well have uses, but the first def 
> should
> +  // only be used by the second insn (and we dropped that use above).
> +  for (int i = 0; i < 2; i++)
> +    if ((!writeback_effect && (writeback & (1 << i)))
> +     || (i == 0 && writeback == 3))
> +      input_defs[i] = check_remove_regno_access (attempt,
> +                                              input_defs[i],
> +                                              base_regno);
> +
> +  // If we don't currently have a writeback pair, and we don't have
> +  // a load that clobbers the base register, look for a trailing destructive
> +  // update of the base register and try and fold it in to make this into a
> +  // writeback pair.
> +  insn_info *trailing_add = nullptr;
> +  if (pair_trailing_writeback_p ()
> +      && !writeback_effect
> +      && (!load_p || (!refers_to_regno_p (base_regno, base_regno + 1,
> +                                      XEXP (pats[0], 0), nullptr)
> +                   && !refers_to_regno_p (base_regno, base_regno + 1,
> +                                          XEXP (pats[1], 0), nullptr))))
> +    {
> +      def_info *add_def;
> +      trailing_add = find_trailing_add (insns, move_range, writeback,
> +                                     &writeback_effect,
> +                                     &add_def, base.def, offsets[0],
> +                                     access_size);
> +      if (trailing_add)
> +     {
> +       // The def of the base register from the trailing add should prevail.
> +       input_defs[0] = insert_access (attempt, add_def, input_defs[0]);
> +       gcc_assert (input_defs[0].is_valid ());
> +     }
> +    }
> +
> +  // Now that we know what base mem we're going to use, check if it's OK
> +  // with the pair mem  policy.
> +  rtx first_mem = XEXP (pats[0], load_p);
> +  if (pair_mem_ok_policy (first_mem,
> +                       load_p,
> +                       GET_MODE (first_mem)))
> +    {
> +      if (dump_file)
> +     fprintf (dump_file, "punting on pair (%d,%d), pair mem  policy says 
> no\n",
> +              i1->uid (), i2->uid ());
> +      return false;
> +    }
> +
> +  rtx reg_notes = combine_reg_notes (first, second, load_p);
> +
> +  rtx pair_pat;
> +
> +  set_multiword_subreg (first, second, load_p);
> +
> +  pair_pat = gen_load_store_pair (pats, writeback_effect, load_p);
> +  if (pair_pat == NULL_RTX)
> +    return false;
> +  insn_change *pair_change = nullptr;
> +  auto set_pair_pat = [pair_pat,reg_notes](insn_change *change) {
> +    rtx_insn *rti = change->insn ()->rtl ();
> +    validate_unshare_change (rti, &PATTERN (rti), pair_pat, true);
> +    validate_change (rti, &REG_NOTES (rti), reg_notes, true);
> +  };
> +
> +  if (load_p)
> +    {
> +      changes.safe_push (make_delete (first));
> +      pair_change = make_change (second);
> +      changes.safe_push (pair_change);
> +
> +      pair_change->move_range = move_range;
> +      pair_change->new_defs = merge_access_arrays (attempt,
> +                                                input_defs[0],
> +                                                input_defs[1]);
> +      gcc_assert (pair_change->new_defs.is_valid ());
> +
> +      pair_change->new_uses
> +     = merge_access_arrays (attempt,
> +                            drop_memory_access (input_uses[0]),
> +                            drop_memory_access (input_uses[1]));
> +      gcc_assert (pair_change->new_uses.is_valid ());
> +      set_pair_pat (pair_change);
> +    }
> +  else
> +    {
> +      using Action = stp_change_builder::action;
> +      insn_info *store_to_change = try_repurpose_store (first, second,
> +                                                     move_range);
> +      stp_change_builder builder (insns, store_to_change, pair_dst);
> +      insn_change *change;
> +      set_info *new_set = nullptr;
> +      for (; !builder.done (); builder.advance ())
> +     {
> +       auto action = builder.get_change ();
> +       change = (action.type == Action::INSERT)
> +         ? nullptr : make_change (action.insn);
> +       switch (action.type)
> +         {
> +         case Action::CHANGE:
> +         {
> +           set_pair_pat (change);
> +           change->new_uses = merge_access_arrays (attempt,
> +                                                   input_uses[0],
> +                                                   input_uses[1]);
> +           auto d1 = drop_memory_access (input_defs[0]);
> +           auto d2 = drop_memory_access (input_defs[1]);
> +           change->new_defs = merge_access_arrays (attempt, d1, d2);
> +           gcc_assert (change->new_defs.is_valid ());
> +           def_info *stp_def = memory_access (change->insn ()->defs ());
> +           change->new_defs = insert_access (attempt,
> +                                             stp_def,
> +                                             change->new_defs);
> +           gcc_assert (change->new_defs.is_valid ());
> +           change->move_range = move_range;
> +           pair_change = change;
> +           break;
> +         }
> +         case Action::TOMBSTONE:
> +         {
> +           tombstone_uids.quick_push (change->insn ()->uid ());
> +           rtx_insn *rti = change->insn ()->rtl ();
> +           validate_change (rti, &PATTERN (rti), gen_tombstone (), true);
> +           validate_change (rti, &REG_NOTES (rti), NULL_RTX, true);
> +           change->new_uses = use_array (nullptr, 0);
> +           break;
> +         }
> +         case Action::INSERT:
> +         {
> +           if (dump_file)
> +             fprintf (dump_file,
> +                      "  stp: cannot re-purpose candidate stores\n");
> +
> +           auto new_insn = crtl->ssa->create_insn (attempt, INSN, pair_pat);
> +           change = make_change (new_insn);
> +           change->move_range = move_range;
> +           change->new_uses = merge_access_arrays (attempt,
> +                                                   input_uses[0],
> +                                                   input_uses[1]);
> +           gcc_assert (change->new_uses.is_valid ());
> +
> +           auto d1 = drop_memory_access (input_defs[0]);
> +           auto d2 = drop_memory_access (input_defs[1]);
> +           change->new_defs = merge_access_arrays (attempt, d1, d2);
> +           gcc_assert (change->new_defs.is_valid ());
> +
> +           new_set = crtl->ssa->create_set (attempt, new_insn, memory);
> +           change->new_defs = insert_access (attempt, new_set,
> +                                             change->new_defs);
> +           gcc_assert (change->new_defs.is_valid ());
> +           pair_change = change;
> +           break;
> +         }
> +         case Action::FIXUP_USE:
> +         {
> +           // This use now needs to consume memory from our stp.
> +           if (dump_file)
> +             fprintf (dump_file,
> +                      "  stp: changing i%d to use mem from new stp "
> +                      "(after i%d)\n",
> +                      action.insn->uid (), pair_dst->uid ());
> +           change->new_uses = drop_memory_access (change->new_uses);
> +           gcc_assert (new_set);
> +           auto new_use = crtl->ssa->create_use (attempt, action.insn,
> +                                                 new_set);
> +           change->new_uses = insert_access (attempt, new_use,
> +                                             change->new_uses);
> +           break;
> +         }
> +         }
> +       changes.safe_push (change);
> +     }
> +    }
> +
> +  if (trailing_add)
> +    changes.safe_push (make_delete (trailing_add));
> +  else if ((writeback & 2) && !writeback_effect)
> +    {
> +      // The second insn initially had writeback but now the pair does not,
> +      // need to update any nondebug uses of the base register def in the
> +      // second insn.  We'll take care of debug uses later.
> +      auto def = find_access (insns[1]->defs (), base_regno);
> +      gcc_assert (def);
> +      auto set = dyn_cast<set_info *> (def);
> +      if (set && set->has_nondebug_uses ())
> +     {
> +       auto orig_use = find_access (insns[0]->uses (), base_regno);
> +       for (auto use : set->nondebug_insn_uses ())
> +         {
> +           auto change = make_change (use->insn ());
> +           change->new_uses = check_remove_regno_access (attempt,
> +                                                         change->new_uses,
> +                                                         base_regno);
> +           change->new_uses = insert_access (attempt,
> +                                             orig_use,
> +                                             change->new_uses);
> +           changes.safe_push (change);
> +         }
> +     }
> +    }
> +
> +  auto is_changing = insn_is_changing (changes);
> +  for (unsigned i = 0; i < changes.length (); i++)
> +    gcc_assert (rtl_ssa::restrict_movement_ignoring (*changes[i], 
> is_changing));
> +
> +  // Check the pair pattern is recog'd.
> +  if (!rtl_ssa::recog_ignoring (attempt, *pair_change, is_changing))
> +    {
> +      if (dump_file)
> +     fprintf (dump_file, "  failed to form pair, recog failed\n");
> +
> +      // Free any reg notes we allocated.
> +      while (reg_notes)
> +     {
> +       rtx next = XEXP (reg_notes, 1);
> +       free_EXPR_LIST_node (reg_notes);
> +       reg_notes = next;
> +     }
> +      cancel_changes (0);
> +      return false;
> +    }
> +
> +  gcc_assert (crtl->ssa->verify_insn_changes (changes));
> +
> +  // Fix up any debug uses that will be affected by the changes.
> +  if (MAY_HAVE_DEBUG_INSNS)
> +    fixup_debug_uses (attempt, insns, orig_rtl, pair_dst, trailing_add,
> +                   load_p, writeback, writeback_effect, base_regno);
> +
> +  confirm_change_group ();
> +  crtl->ssa->change_insns (changes);
> +
> +  gcc_checking_assert (tombstone_uids.length () <= 2);
> +  for (auto uid : tombstone_uids)
> +    track_tombstone (uid);
> +
> +  return true;
> +}
> +
> +
> -- 
> 2.39.3
> 

Reply via email to