On Tue, Dec 20, 2022 at 2:23 PM Manolis Tsamis <manolis.tsa...@vrull.eu> wrote: > > When using SWAR (SIMD in a register) techniques a comparison operation within > such a register can be made by using a combination of shifts, bitwise and and > multiplication. If code using this scheme is vectorized then there is > potential > to replace all these operations with a single vector comparison, by > reinterpreting > the vector types to match the width of the SWAR register. > > For example, for the test function packed_cmp_16_32, the original generated > code is: > > ldr q0, [x0] > add w1, w1, 1 > ushr v0.4s, v0.4s, 15 > and v0.16b, v0.16b, v2.16b > shl v1.4s, v0.4s, 16 > sub v0.4s, v1.4s, v0.4s > str q0, [x0], 16 > cmp w2, w1 > bhi .L20 > > with this pattern the above can be optimized to: > > ldr q0, [x0] > add w1, w1, 1 > cmlt v0.8h, v0.8h, #0 > str q0, [x0], 16 > cmp w2, w1 > bhi .L20 > > The effect is similar for x86-64. > > gcc/ChangeLog: > > * match.pd: Simplify vector shift + bit_and + multiply in some cases. > > gcc/testsuite/ChangeLog: > > * gcc.target/aarch64/swar_to_vec_cmp.c: New test. > > Signed-off-by: Manolis Tsamis <manolis.tsa...@vrull.eu> > > --- > > Changes in v3: > - Changed pattern to use vec_cond_expr. > - Changed pattern to work with VLA vector. > - Added both expand_vec_cmp_expr_p and > expand_vec_cond_expr_p check. > - Fixed type compatibility issues. > > gcc/match.pd | 61 ++++++++++++++++ > .../gcc.target/aarch64/swar_to_vec_cmp.c | 72 +++++++++++++++++++ > 2 files changed, 133 insertions(+) > create mode 100644 gcc/testsuite/gcc.target/aarch64/swar_to_vec_cmp.c > > diff --git a/gcc/match.pd b/gcc/match.pd > index 67a0a682f31..320437f8aa3 100644 > --- a/gcc/match.pd > +++ b/gcc/match.pd > @@ -301,6 +301,67 @@ DEFINE_INT_AND_FLOAT_ROUND_FN (RINT) > (view_convert (bit_and:itype (view_convert @0) > (ne @1 { build_zero_cst (type); }))))))) > > +/* In SWAR (SIMD within a register) code a signed comparison of packed data > + can be constructed with a particular combination of shift, bitwise and, > + and multiplication by constants. If that code is vectorized we can > + convert this pattern into a more efficient vector comparison. */ > +(simplify > + (mult (bit_and (rshift @0 uniform_integer_cst_p@1) > + uniform_integer_cst_p@2) > + uniform_integer_cst_p@3) > + (with { > + tree rshift_cst = uniform_integer_cst_p (@1); > + tree bit_and_cst = uniform_integer_cst_p (@2); > + tree mult_cst = uniform_integer_cst_p (@3); > + } > + /* Make sure we're working with vectors and uniform vector constants. */ > + (if (VECTOR_TYPE_P (type) > + && tree_fits_uhwi_p (rshift_cst) > + && tree_fits_uhwi_p (mult_cst) > + && tree_fits_uhwi_p (bit_and_cst)) > + /* Compute what constants would be needed for this to represent a packed > + comparison based on the shift amount denoted by RSHIFT_CST. */ > + (with { > + HOST_WIDE_INT vec_elem_bits = vector_element_bits (type); > + poly_int64 vec_nelts = TYPE_VECTOR_SUBPARTS (type); > + poly_int64 vec_bits = vec_elem_bits * vec_nelts; > + unsigned HOST_WIDE_INT cmp_bits_i, bit_and_i, mult_i; > + unsigned HOST_WIDE_INT target_mult_i, target_bit_and_i; > + cmp_bits_i = tree_to_uhwi (rshift_cst) + 1; > + mult_i = tree_to_uhwi (mult_cst); > + target_mult_i = (HOST_WIDE_INT_1U << cmp_bits_i) - 1; > + bit_and_i = tree_to_uhwi (bit_and_cst); > + target_bit_and_i = 0; > + > + /* The bit pattern in BIT_AND_I should be a mask for the least > + significant bit of each packed element that is CMP_BITS wide. */ > + for (unsigned i = 0; i < vec_elem_bits / cmp_bits_i; i++) > + target_bit_and_i = (target_bit_and_i << cmp_bits_i) | 1U; > + } > + (if ((exact_log2 (cmp_bits_i)) >= 0 > + && cmp_bits_i < HOST_BITS_PER_WIDE_INT > + && multiple_p (vec_bits, cmp_bits_i) > + && vec_elem_bits <= HOST_BITS_PER_WIDE_INT > + && target_mult_i == mult_i > + && target_bit_and_i == bit_and_i) > + /* Compute the vector shape for the comparison and check if the target > is > + able to expand the comparison with that type. */ > + (with { > + /* We're doing a signed comparison. */ > + tree cmp_type = build_nonstandard_integer_type (cmp_bits_i, 0); > + poly_int64 vector_type_nelts = exact_div (vec_bits, cmp_bits_i); > + tree vec_cmp_type = build_vector_type (cmp_type, vector_type_nelts); > + tree vec_truth_type = truth_type_for (vec_cmp_type); > + tree zeros = build_zero_cst (vec_cmp_type); > + tree ones = build_all_ones_cst (vec_cmp_type); > + } > + (if (expand_vec_cmp_expr_p (vec_cmp_type, vec_truth_type, LT_EXPR) > + && expand_vec_cond_expr_p (vec_cmp_type, vec_truth_type, LT_EXPR)) > + (view_convert:type (vec_cond (lt:vec_truth_type > + (view_convert:vec_cmp_type @0) > + { zeros; }) > + { ones; } { zeros; }))))))))) > +
I have added the additional expand_vec_cond_expr_p check and also changed the less_than expression to be (lt:vec_truth_type ...) because otherwise there were type issues when running GCC with -fchecking. As per my previous comment I haven't replaced uniform_integer_cst_p with VECTOR_CST because the vectorized shift doesn't use a VECTOR_CST but rather a scalar constant. I don't know if I can assume that the constant will always be a scalar value. If that is the case and it is preferable to replace the use of uniform_integer_cst_p with a combination of VECTOR_CST and INTEGER_CST please let me know and I will do so. Thanks, Manolis > (for cmp (gt ge lt le) > outp (convert convert negate negate) > outn (negate negate convert convert) > diff --git a/gcc/testsuite/gcc.target/aarch64/swar_to_vec_cmp.c > b/gcc/testsuite/gcc.target/aarch64/swar_to_vec_cmp.c > new file mode 100644 > index 00000000000..26f9ad9ef28 > --- /dev/null > +++ b/gcc/testsuite/gcc.target/aarch64/swar_to_vec_cmp.c > @@ -0,0 +1,72 @@ > +/* { dg-do compile } */ > +/* { dg-options "-O2 -ftree-vectorize" } */ > + > +typedef unsigned char uint8_t; > +typedef unsigned short uint16_t; > +typedef unsigned int uint32_t; > + > +/* 8-bit SWAR tests. */ > + > +static uint8_t packed_cmp_8_8(uint8_t a) > +{ > + return ((a >> 7) & 0x1U) * 0xffU; > +} > + > +/* 16-bit SWAR tests. */ > + > +static uint16_t packed_cmp_8_16(uint16_t a) > +{ > + return ((a >> 7) & 0x101U) * 0xffU; > +} > + > +static uint16_t packed_cmp_16_16(uint16_t a) > +{ > + return ((a >> 15) & 0x1U) * 0xffffU; > +} > + > +/* 32-bit SWAR tests. */ > + > +static uint32_t packed_cmp_8_32(uint32_t a) > +{ > + return ((a >> 7) & 0x1010101U) * 0xffU; > +} > + > +static uint32_t packed_cmp_16_32(uint32_t a) > +{ > + return ((a >> 15) & 0x10001U) * 0xffffU; > +} > + > +static uint32_t packed_cmp_32_32(uint32_t a) > +{ > + return ((a >> 31) & 0x1U) * 0xffffffffU; > +} > + > +/* Driver function to test the vectorized code generated for the different > + packed_cmp variants. */ > + > +#define VECTORIZED_PACKED_CMP(T, FUNC) \ > + void vectorized_cmp_##FUNC(T* a, int n) \ > + { \ > + n = (n / 32) * 32; \ > + for(int i = 0; i < n; i += 4) \ > + { \ > + a[i + 0] = FUNC(a[i + 0]); \ > + a[i + 1] = FUNC(a[i + 1]); \ > + a[i + 2] = FUNC(a[i + 2]); \ > + a[i + 3] = FUNC(a[i + 3]); \ > + } \ > + } > + > +VECTORIZED_PACKED_CMP(uint8_t, packed_cmp_8_8); > + > +VECTORIZED_PACKED_CMP(uint16_t, packed_cmp_8_16); > +VECTORIZED_PACKED_CMP(uint16_t, packed_cmp_16_16); > + > +VECTORIZED_PACKED_CMP(uint32_t, packed_cmp_8_32); > +VECTORIZED_PACKED_CMP(uint32_t, packed_cmp_16_32); > +VECTORIZED_PACKED_CMP(uint32_t, packed_cmp_32_32); > + > +/* { dg-final { scan-assembler {\tcmlt\t} } } */ > +/* { dg-final { scan-assembler-not {\tushr\t} } } */ > +/* { dg-final { scan-assembler-not {\tshl\t} } } */ > +/* { dg-final { scan-assembler-not {\tmul\t} } } */ > -- > 2.34.1 >