On Tue, Nov 08, 2022 at 09:44:40AM -0800, Andrew Waterman wrote:
> On Tue, Nov 8, 2022 at 3:20 AM Jakub Jelinek via Gcc-patches
> <[email protected]> wrote:
> >
> > On Mon, Nov 07, 2022 at 04:41:23PM +0100, Aldy Hernandez wrote:
> > > As suggested upthread, I have also adjusted update_nan_sign() to drop
> > > the NAN sign to VARYING if both operands are NAN. As an optimization
> > > I keep the sign if both operands are NAN and have the same sign.
> >
> > For NaNs this still relies on something IEEE754 doesn't guarantee,
> > as I cited, after a binary operation the sign bit of the NaN is
> > unspecified, whether there is one NaN operand or two.
> > It might be that all CPUs handle it the way you've implemented
> > (that for one NaN operand the sign of NaN result will be the same
> > as that NaN operand and for two it will be the sign of one of the two
> > NaNs operands, never something else), but I think we'd need to check
> > more than one implementation for that (I've only tried x86_64 and thus
> > SSE behavior in it), so one would need to test i387 long double behavior
> > too, ARM/AArch64, PowerPC, s390{,x}, RISCV, ...
> > The guarantee given by IEEE754 is only for those copy, negate, abs, copySign
> > operations, so copying values around, NEG_EXPR, ABS_EXPR, __builtin_fabs*,
> > __builtin_copysign*.
>
> FWIW, RISC-V canonicalizes NaNs by clearing the sign bit; the signs of
> the input NaNs do not factor in.
Just for binary operations and some unary, or also the ones that
IEEE754 spells out (moves, negations, absolute value and copysign)?
Jakub