On Sat, Aug 13, 2022 at 11:59 AM mtsamis <[email protected]> wrote:
>
> When using SWAR (SIMD in a register) techniques a comparison operation within
> such a register can be made by using a combination of shifts, bitwise and and
> multiplication. If code using this scheme is vectorized then there is
> potential
> to replace all these operations with a single vector comparison, by
> reinterpreting
> the vector types to match the width of the SWAR register.
>
> For example, for the test function packed_cmp_16_32, the original generated
> code is:
>
> ldr q0, [x0]
> add w1, w1, 1
> ushr v0.4s, v0.4s, 15
> and v0.16b, v0.16b, v2.16b
> shl v1.4s, v0.4s, 16
> sub v0.4s, v1.4s, v0.4s
> str q0, [x0], 16
> cmp w2, w1
> bhi .L20
>
> with this pattern the above can be optimized to:
>
> ldr q0, [x0]
> add w1, w1, 1
> cmlt v0.8h, v0.8h, #0
> str q0, [x0], 16
> cmp w2, w1
> bhi .L20
>
> The effect is similar for x86-64.
>
> gcc/ChangeLog:
>
> * match.pd: Simplify vector shift + bit_and + multiply in some cases.
>
> gcc/testsuite/ChangeLog:
>
> * gcc.target/aarch64/swar_to_vec_cmp.c: New test.
>
> Signed-off-by: mtsamis <[email protected]>
> ---
> gcc/match.pd | 57 +++++++++++++++
> .../gcc.target/aarch64/swar_to_vec_cmp.c | 72 +++++++++++++++++++
> 2 files changed, 129 insertions(+)
> create mode 100644 gcc/testsuite/gcc.target/aarch64/swar_to_vec_cmp.c
>
> diff --git a/gcc/match.pd b/gcc/match.pd
> index 8bbc0dbd5cd..5c768a94846 100644
> --- a/gcc/match.pd
> +++ b/gcc/match.pd
> @@ -301,6 +301,63 @@ DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
> (view_convert (bit_and:itype (view_convert @0)
> (ne @1 { build_zero_cst (type); })))))))
>
> +/* In SWAR (SIMD in a register) code a comparison of packed data can
> + be consturcted with a particular combination of shift, bitwise and,
> + and multiplication by constants. If that code is vectorized we can
> + convert this pattern into a more efficient vector comparison. */
> +(simplify
> + (mult (bit_and (rshift @0 @1) @2) @3)
You should restrict the pattern a bit more, below you use uniform_integer_cst_p
and also require a vector type thus
(simplify
(mult (bit_and (rshift @0 VECTOR_CST@1) VECTOR_CST@2) VECTOR_CST@3)
> + (with {
> + tree op_type = TREE_TYPE (@0);
that's the same as 'type' which is already available.
> + tree rshift_cst = NULL_TREE;
> + tree bit_and_cst = NULL_TREE;
> + tree mult_cst = NULL_TREE;
> + }
> + /* Make sure we're working with vectors and uniform vector constants. */
> + (if (VECTOR_TYPE_P (op_type)
> + && (rshift_cst = uniform_integer_cst_p (@1))
> + && (bit_and_cst = uniform_integer_cst_p (@2))
> + && (mult_cst = uniform_integer_cst_p (@3)))
> + /* Compute what constants would be needed for this to represent a packed
> + comparison based on the shift amount denoted by RSHIFT_CST. */
> + (with {
> + HOST_WIDE_INT vec_elem_bits = vector_element_bits (op_type);
> + HOST_WIDE_INT vec_nelts = TYPE_VECTOR_SUBPARTS (op_type).to_constant ();
you need to check that this isn't a VLA vector operation.
> + HOST_WIDE_INT vec_bits = vec_elem_bits * vec_nelts;
> +
> + unsigned HOST_WIDE_INT cmp_bits_i, bit_and_i, mult_i;
> + unsigned HOST_WIDE_INT target_mult_i, target_bit_and_i;
> + cmp_bits_i = tree_to_uhwi (rshift_cst) + 1;
and that the rshift_cst and others actually fit an uhwi.
> + target_mult_i = (HOST_WIDE_INT_1U << cmp_bits_i) - 1;
> +
> + mult_i = tree_to_uhwi (mult_cst);
> + bit_and_i = tree_to_uhwi (bit_and_cst);
> + target_bit_and_i = 0;
> +
> + for (unsigned i = 0; i < vec_elem_bits / cmp_bits_i; i++)
> + target_bit_and_i = (target_bit_and_i << cmp_bits_i) | 1U;
it would be nice to have a comment on what this actually does ...
> + }
> + (if ((exact_log2 (cmp_bits_i)) >= 0
> + && cmp_bits_i < HOST_BITS_PER_WIDE_INT
> + && vec_elem_bits <= HOST_BITS_PER_WIDE_INT
> + && tree_fits_uhwi_p (rshift_cst)
> + && tree_fits_uhwi_p (mult_cst)
> + && tree_fits_uhwi_p (bit_and_cst)
> + && target_mult_i == mult_i
> + && target_bit_and_i == bit_and_i)
> + /* Compute the vector shape for the comparison and check if the target
> is
> + able to expand the comparison with that type. */
> + (with {
> + tree bool_type = build_nonstandard_boolean_type (cmp_bits_i);
> + int vector_type_nelts = vec_bits / cmp_bits_i;
> + tree vector_type = build_vector_type (bool_type, vector_type_nelts);
why do you build a bool vector type here and then ...
> + tree zeros = build_zero_cst (vector_type);
> + tree mask_type = truth_type_for (vector_type);
... its truth type? Note both might not be actually supported by the target
and thus receive BLKmode or an integer mode. The latter is a problem
for expand_vec_cmp_expr_p as that might pick up a pattern not suitable
here. Also note that truth_type_for can result in a mask mode, aka
QImode with AVX512 or some VnBImode on other archs - those are
not OK to be simply view_converted back to op_type. In general
a vector compare operation yields a mask and you can convert that
to a -1/0 value using a vec_cond_expr. I think we have a pattern
that can then properly simplify the case where this can be expressed
as a view_convert, but of course you then also need to check for
vec_cond_expr support.
I would suggest you make 'vector_type' an integer element type
(that also properly specifies the sign of the comparison!) and check
you end up with a vector mode and the mode of the mask_type
agrees with that if you don't want to go the vec_cond_expr route.
> + }
> + (if (expand_vec_cmp_expr_p (vector_type, mask_type, LT_EXPR))
> + (view_convert:op_type (lt:mask_type (view_convert:vector_type @0)
> + { zeros; })))))))))
> +
> (for cmp (gt ge lt le)
> outp (convert convert negate negate)
> outn (negate negate convert convert)
> diff --git a/gcc/testsuite/gcc.target/aarch64/swar_to_vec_cmp.c
> b/gcc/testsuite/gcc.target/aarch64/swar_to_vec_cmp.c
> new file mode 100644
> index 00000000000..26f9ad9ef28
> --- /dev/null
> +++ b/gcc/testsuite/gcc.target/aarch64/swar_to_vec_cmp.c
> @@ -0,0 +1,72 @@
> +/* { dg-do compile } */
> +/* { dg-options "-O2 -ftree-vectorize" } */
> +
> +typedef unsigned char uint8_t;
> +typedef unsigned short uint16_t;
> +typedef unsigned int uint32_t;
> +
> +/* 8-bit SWAR tests. */
> +
> +static uint8_t packed_cmp_8_8(uint8_t a)
> +{
> + return ((a >> 7) & 0x1U) * 0xffU;
> +}
> +
> +/* 16-bit SWAR tests. */
> +
> +static uint16_t packed_cmp_8_16(uint16_t a)
> +{
> + return ((a >> 7) & 0x101U) * 0xffU;
> +}
> +
> +static uint16_t packed_cmp_16_16(uint16_t a)
> +{
> + return ((a >> 15) & 0x1U) * 0xffffU;
> +}
> +
> +/* 32-bit SWAR tests. */
> +
> +static uint32_t packed_cmp_8_32(uint32_t a)
> +{
> + return ((a >> 7) & 0x1010101U) * 0xffU;
> +}
> +
> +static uint32_t packed_cmp_16_32(uint32_t a)
> +{
> + return ((a >> 15) & 0x10001U) * 0xffffU;
> +}
> +
> +static uint32_t packed_cmp_32_32(uint32_t a)
> +{
> + return ((a >> 31) & 0x1U) * 0xffffffffU;
> +}
> +
> +/* Driver function to test the vectorized code generated for the different
> + packed_cmp variants. */
> +
> +#define VECTORIZED_PACKED_CMP(T, FUNC) \
> + void vectorized_cmp_##FUNC(T* a, int n) \
> + { \
> + n = (n / 32) * 32; \
> + for(int i = 0; i < n; i += 4) \
> + { \
> + a[i + 0] = FUNC(a[i + 0]); \
> + a[i + 1] = FUNC(a[i + 1]); \
> + a[i + 2] = FUNC(a[i + 2]); \
> + a[i + 3] = FUNC(a[i + 3]); \
> + } \
> + }
> +
> +VECTORIZED_PACKED_CMP(uint8_t, packed_cmp_8_8);
> +
> +VECTORIZED_PACKED_CMP(uint16_t, packed_cmp_8_16);
> +VECTORIZED_PACKED_CMP(uint16_t, packed_cmp_16_16);
> +
> +VECTORIZED_PACKED_CMP(uint32_t, packed_cmp_8_32);
> +VECTORIZED_PACKED_CMP(uint32_t, packed_cmp_16_32);
> +VECTORIZED_PACKED_CMP(uint32_t, packed_cmp_32_32);
> +
> +/* { dg-final { scan-assembler {\tcmlt\t} } } */
> +/* { dg-final { scan-assembler-not {\tushr\t} } } */
> +/* { dg-final { scan-assembler-not {\tshl\t} } } */
> +/* { dg-final { scan-assembler-not {\tmul\t} } } */
> --
> 2.34.1
>