Hi Richard,
On 31/08/18 12:07, Richard Biener wrote:
> On Thu, 30 Aug 2018, Kyrill Tkachov wrote:
>
>> Ping.
>>
>> https://gcc.gnu.org/ml/gcc-patches/2018-08/msg01496.html
>>
>> Thanks,
>> Kyrill
>>
>> On 23/08/18 18:09, Kyrill Tkachov wrote:
>>> Hi Richard,
>>>
>>> On 23/08/18 11:13, Richard Sandiford wrote:
>>>> Kyrill Tkachov <[email protected]> writes:
>>>>> Hi all,
>>>>>
>>>>> This patch aims to optimise sequences involving uses of 1.0 / sqrt (a)
>>>>> under -freciprocal-math and -funsafe-math-optimizations.
>>>>> In particular consider:
>>>>>
>>>>> x = 1.0 / sqrt (a);
>>>>> r1 = x * x; // same as 1.0 / a
>>>>> r2 = a * x; // same as sqrt (a)
>>>>>
>>>>> If x, r1 and r2 are all used further on in the code, this can be
>>>>> transformed into:
>>>>> tmp1 = 1.0 / a
>>>>> tmp2 = sqrt (a)
>>>>> tmp3 = tmp1 * tmp2
>>>>> x = tmp3
>>>>> r1 = tmp1
>>>>> r2 = tmp2
>>>> Nice optimisation :-) Someone who knows the pass better should review,
>>>> but:
>>>
>>> Thanks for the review.
>>>
>>>> There seems to be an implicit assumption that this is a win even
>>>> when the r1 and r2 assignments are only conditionally executed.
>>>> That's probably true, but it might be worth saying explicitly.
>>>
>>> I'll admit I had not considered that case.
>>> I think it won't make a difference in practice, as the really expensive
>>> operations here
>>> are the sqrt and the division and they are on the executed path in either
>>> case and them
>>> becoming independent should be a benefit of its own.
>>>
>>>>> +/* Return TRUE if USE_STMT is a multiplication of DEF by A. */
>>>>> +
>>>>> +static inline bool
>>>>> +is_mult_by (gimple *use_stmt, tree def, tree a)
>>>>> +{
>>>>> + if (gimple_code (use_stmt) == GIMPLE_ASSIGN
>>>>> + && gimple_assign_rhs_code (use_stmt) == MULT_EXPR)
>>>>> + {
>>>>> + tree op0 = gimple_assign_rhs1 (use_stmt);
>>>>> + tree op1 = gimple_assign_rhs2 (use_stmt);
>>>>> +
>>>>> + return (op0 == def && op1 == a)
>>>>> + || (op0 == a && op1 == def);
>>>>> + }
>>>>> + return 0;
>>>>> +}
>>>> Seems like is_square_of could now be a light-weight wrapper around this.
>>>
>>> Indeed, I've done the wrapping now.
>>>
>>>>> @@ -652,6 +669,180 @@ execute_cse_reciprocals_1 (gimple_stmt_iterator
>>>>> *def_gsi, tree def)
>>>>> occ_head = NULL;
>>>>> }
>>>>> +/* Transform sequences like
>>>>> + x = 1.0 / sqrt (a);
>>>>> + r1 = x * x;
>>>>> + r2 = a * x;
>>>>> + into:
>>>>> + tmp1 = 1.0 / a;
>>>>> + tmp2 = sqrt (a);
>>>>> + tmp3 = tmp1 * tmp2;
>>>>> + x = tmp3;
>>>>> + r1 = tmp1;
>>>>> + r2 = tmp2;
>>>>> + depending on the uses of x, r1, r2. This removes one multiplication
>>>>> and
>>>>> + allows the sqrt and division operations to execute in parallel.
>>>>> + DEF_GSI is the gsi of the initial division by sqrt that defines
>>>>> + DEF (x in the example abovs). */
>>>>> +
>>>>> +static void
>>>>> +optimize_recip_sqrt (gimple_stmt_iterator *def_gsi, tree def)
>>>>> +{
>>>>> + use_operand_p use_p;
>>>>> + imm_use_iterator use_iter;
>>>>> + gimple *stmt = gsi_stmt (*def_gsi);
>>>>> + tree x = def;
>>>>> + tree orig_sqrt_ssa_name = gimple_assign_rhs2 (stmt);
>>>>> + tree div_rhs1 = gimple_assign_rhs1 (stmt);
>>>>> +
>>>>> + if (TREE_CODE (orig_sqrt_ssa_name) != SSA_NAME
>>>>> + || TREE_CODE (div_rhs1) != REAL_CST
>>>>> + || !real_equal (&TREE_REAL_CST (div_rhs1), &dconst1))
>>>>> + return;
>>>>> +
>>>>> + gimple *sqrt_stmt = SSA_NAME_DEF_STMT (orig_sqrt_ssa_name);
>>>>> + if (!is_gimple_call (sqrt_stmt)
>>>>> + || !gimple_call_lhs (sqrt_stmt))
>>>>> + return;
>>>>> +
>>>>> + gcall *call = as_a <gcall *> (sqrt_stmt);
>>>> Very minor, but:
>>>>
>>>> gcall *sqrt_stmt
>>>> = dyn_cast <gcall *> (SSA_NAME_DEF_STMT (orig_sqrt_ssa_name));
>>>> if (!sqrt_stmt || !gimple_call_lhs (sqrt_stmt))
>>>> return;
>>>>
>>>> would avoid the need for the separate as_a<>, and would mean that
>>>> we only call gimple_call_* on gcalls.
>>>
>>> Ok.
>>>
>>>>> + if (has_other_use)
>>>>> + {
>>>>> + /* Using the two temporaries tmp1, tmp2 from above
>>>>> + the original x is now:
>>>>> + x = tmp1 * tmp2. */
>>>>> + gcc_assert (mult_ssa_name);
>>>>> + gcc_assert (sqr_ssa_name);
>>>>> + gimple_stmt_iterator gsi2 = gsi_for_stmt (stmt);
>>>>> +
>>>>> + tree new_ssa_name
>>>>> + = make_temp_ssa_name (TREE_TYPE (a), NULL,
>>>>> "recip_sqrt_transformed");
>>>>> + gimple *new_stmt
>>>>> + = gimple_build_assign (new_ssa_name, MULT_EXPR,
>>>>> + mult_ssa_name, sqr_ssa_name);
>>>>> + gsi_insert_before (&gsi2, new_stmt, GSI_SAME_STMT);
>>>>> + gcc_assert (gsi_stmt (gsi2) == stmt);
>>>>> + gimple_assign_set_rhs_from_tree (&gsi2, new_ssa_name);
>>>>> + fold_stmt (&gsi2);
>>>>> + update_stmt (stmt);
>>>> In this case we're replacing the statement in its original position,
>>>> so there's no real need to use a temporary. It seems better to
>>>> change the rhs_code, rhs1 and rhs2 of stmt in-place, with the same
>>>> lhs as before.
>>>
>>> Yes, that's cleaner.
>>>
>>>>> @@ -762,6 +953,23 @@ pass_cse_reciprocals::execute (function *fun)
>>>>> if (optimize_bb_for_size_p (bb))
>>>>> continue;
>>>> Seems unnecessary to skip the new optimisation when optimising for size.
>>>> Like you say, it saves a multiplication overall. Also:
>>>
>>> Indeed.
>>>
>>>>> + if (flag_unsafe_math_optimizations)
>>>>> + {
>>>>> + for (gimple_stmt_iterator gsi = gsi_after_labels (bb);
>>>>> + !gsi_end_p (gsi);
>>>>> + gsi_next (&gsi))
>>>>> + {
>>>>> + gimple *stmt = gsi_stmt (gsi);
>>>>> +
>>>>> + if (gimple_has_lhs (stmt)
>>>>> + && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
>>>>> + && FLOAT_TYPE_P (TREE_TYPE (def))
>>>>> + && TREE_CODE (def) == SSA_NAME
>>>>> + && is_gimple_assign (stmt)
>>>>> + && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
>>>>> + optimize_recip_sqrt (&gsi, def);
>>>>> + }
>>>>> + }
>>>> It looks like this could safely be done in one of the existing walks
>>>> (e.g. the execute_cse_reciprocals_1 one, if we do this when optimising
>>>> for size).
>>>
>>> You're right. I've moved this into one of the walks above this.
>>>
>>> Bootstrapped and tested on aarch64-none-linux-gnu and
>>> x86_64-unknown-linux-gnu.
>>> CC'ing richi as he's reviewed these kinds of patches in the past.
>>>
>>> Is this ok for trunk?
>
> I wonder how it interacts with execute_cse_reciprocals_1 given it
> introduces a division 1.0 / a which will be not processed by
> execute_cse_reciprocals_1 given that operates by walking uses of 'a'.
> That may be just a missed optimization of course.
Hmm, I believe right now it doesn't interact with execute_cse_reciprocals_1 as
it's either one or the other.
I've left it as it is for now, but would you like us to call
execute_cse_reciprocals_1 on the potentially transformed division?
>
> + if (has_other_use)
> + {
> + /* Using the two temporaries tmp1, tmp2 from above
> + the original x is now:
> + x = tmp1 * tmp2. */
> + gcc_assert (mult_ssa_name);
> + gcc_assert (sqr_ssa_name);
> +
> + gimple_assign_set_rhs1 (stmt, mult_ssa_name);
> + gimple_assign_set_rhs2 (stmt, sqr_ssa_name);
> + gimple_assign_set_rhs_code (stmt, MULT_EXPR);
> + fold_stmt_inplace (def_gsi);
> + update_stmt (stmt);
> + }
>
> so you are leaving the original stmt in place unchanged even if it is
> not used? Why? Note that with -fno-call-exceptions this stmt may
> throw, so you should arrange to code-generate 1./a in place of the
> original division to preserve EH behavior. Watch out because then
> with other uses you have to find a place to insert its computation.
Ok. These are oversights on my part. I've updated the patch to modify the
original division in place. The multiplication is placed after it.
>
> + if (is_square_of (stmt2, x))
> + {
> + if (!sqr_stmts.contains (stmt2))
> + sqr_stmts.safe_push (stmt2);
> + }
>
> this is quadratic in the number of square stmts... please consider
> making sqr_stmts a bitmap of SSA defs (so the stmt you have now
> is then SSA_NAME_DEF_STMT (ssa_name (bitmap-element))).
>
Done. In practice I didn't see there being more than one such use, I expect them
to be CSE'd, but maybe if they're in different basic blocks...
> You do not seem to restrict placement of the use stmts but insert
> before the 1/sqrt(a) stmt. That possibly hoists the multiplications
> where they are not needed. Consider
>
> x = 1./sqrt(a);
> if (l)
> l1 = x * 3.;
> else if (l2)
> l1 = x * x;
> else if (l3)
> l1 = a * x;
>
> or similar where on the path to x * 3. you now perform two extra
> multiplications.
>
Ok, I've restricted the optimisation somewhat.
Now if there's an other use it won't perform the transformation unless there is
already
a multiplication present on the main path. That way it won't introduce
multiplications
on paths where there aren't any.
> Your testcases do not cover the case of other uses at all. Or of
> EH.
gcc.dg/recip_sqrt_mult_1.c should handle the other uses case as tmp is a global
being written to. I've added more testcases involving uses in different basic
blocks
and a g++.dg testcase with -fnon-call-exceptions.
I'm not sure what functionality to test though apart from that it doesn't ICE
and does
the transformations I expect.
Bootstrapped and tested on aarch64-none-linux-gnu.
Is this version better?
Thanks,
Kyrill
2018-09-03 Kyrylo Tkachov <[email protected]>
* tree-ssa-math-opts.c (is_mult_by): New function.
(is_square_of): Use the above.
(optimize_recip_sqrt): New function.
(pass_cse_reciprocals::execute): Use the above.
2018-09-03 Kyrylo Tkachov <[email protected]>
* gcc.dg/recip_sqrt_mult_1.c: New test.
* gcc.dg/recip_sqrt_mult_2.c: Likewise.
* gcc.dg/recip_sqrt_mult_3.c: Likewise.
* gcc.dg/recip_sqrt_mult_4.c: Likewise.
* gcc.dg/recip_sqrt_mult_5.c: Likewise.
* g++.dg/recip_sqrt_mult_1.c: Likewise.
diff --git a/gcc/testsuite/g++.dg/recip_sqrt_mult_1.C b/gcc/testsuite/g++.dg/recip_sqrt_mult_1.C
new file mode 100644
index 0000000000000000000000000000000000000000..11d9c6f758f1529d8ed4cadf85010f6ce379c195
--- /dev/null
+++ b/gcc/testsuite/g++.dg/recip_sqrt_mult_1.C
@@ -0,0 +1,49 @@
+/* { dg-do compile } */
+/* { dg-options "-Ofast -fnon-call-exceptions -fdump-tree-recip" } */
+
+double res, res2, tmp;
+void
+foo1 (double a, double b)
+{
+ try {
+ tmp = 1.0 / __builtin_sqrt (a);
+ res = tmp * tmp;
+ res2 = a * tmp;
+ }
+ catch (...)
+ { ; }
+}
+
+void
+foo4 (double a, double b, int c, int d)
+{
+ try {
+ tmp = 1.0 / __builtin_sqrt (a);
+ }
+ catch (...)
+ {
+ if (c)
+ res = tmp * tmp;
+
+ if (d)
+ res2 = a * tmp;
+ }
+}
+
+void
+foo5 (double a, double b, int c, int d)
+{
+ try {
+ tmp = 1.0 / __builtin_sqrt (a);
+ res = tmp * tmp;
+
+ if (d)
+ res2 = a * tmp;
+ }
+ catch (...)
+ { ; }
+}
+
+/* { dg-final { scan-tree-dump-times "Optimizing reciprocal sqrt multiplications" 2 "recip" } } */
+/* { dg-final { scan-tree-dump-times "Replacing squaring multiplication" 2 "recip" } } */
+/* { dg-final { scan-tree-dump-times "Replacing original division" 2 "recip" } } */
diff --git a/gcc/testsuite/gcc.dg/recip_sqrt_mult_1.c b/gcc/testsuite/gcc.dg/recip_sqrt_mult_1.c
new file mode 100644
index 0000000000000000000000000000000000000000..188390a4ecffca1b21f05c4f19abecfb7ebd188f
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/recip_sqrt_mult_1.c
@@ -0,0 +1,15 @@
+/* { dg-do compile } */
+/* { dg-options "-Ofast -fdump-tree-recip" } */
+
+double res, res2, tmp;
+void
+foo (double a, double b)
+{
+ tmp = 1.0 / __builtin_sqrt (a);
+ res = tmp * tmp;
+ res2 = a * tmp;
+}
+
+/* { dg-final { scan-tree-dump "Optimizing reciprocal sqrt multiplications" "recip" } } */
+/* { dg-final { scan-tree-dump "Replacing squaring multiplication" "recip" } } */
+/* { dg-final { scan-tree-dump "Replacing original division" "recip" } } */
diff --git a/gcc/testsuite/gcc.dg/recip_sqrt_mult_2.c b/gcc/testsuite/gcc.dg/recip_sqrt_mult_2.c
new file mode 100644
index 0000000000000000000000000000000000000000..c5fc3de7b657b1769e76254b4bc874e0595e43ef
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/recip_sqrt_mult_2.c
@@ -0,0 +1,11 @@
+/* { dg-do compile } */
+/* { dg-options "-Ofast -fdump-tree-optimized" } */
+
+float
+foo (float a)
+{
+ float tmp = 1.0f / __builtin_sqrtf (a);
+ return a * tmp;
+}
+
+/* { dg-final { scan-tree-dump-not " / " "optimized" } } */
diff --git a/gcc/testsuite/gcc.dg/recip_sqrt_mult_3.c b/gcc/testsuite/gcc.dg/recip_sqrt_mult_3.c
new file mode 100644
index 0000000000000000000000000000000000000000..e7d185ba7e22cfc7cca72296d5ccc544f24fdb14
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/recip_sqrt_mult_3.c
@@ -0,0 +1,11 @@
+/* { dg-do compile } */
+/* { dg-options "-Ofast -fdump-tree-optimized" } */
+
+double
+foo (double a)
+{
+ double tmp = 1.0f / __builtin_sqrt (a);
+ return tmp * tmp;
+}
+
+/* { dg-final { scan-tree-dump-not "__builtin_sqrt" "optimized" } } */
diff --git a/gcc/testsuite/gcc.dg/recip_sqrt_mult_4.c b/gcc/testsuite/gcc.dg/recip_sqrt_mult_4.c
new file mode 100644
index 0000000000000000000000000000000000000000..e3005f2feb6f4bacbb6eafc0155e196cb866fcdf
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/recip_sqrt_mult_4.c
@@ -0,0 +1,21 @@
+/* { dg-do compile } */
+/* { dg-options "-Ofast -fdump-tree-recip" } */
+
+/* The main path doesn't have any multiplications.
+ Avoid introducing them in the recip pass. */
+
+double res, res2, tmp;
+void
+foo (double a, double b, int c, int d)
+{
+ tmp = 1.0 / __builtin_sqrt (a);
+ if (c)
+ res = tmp * tmp;
+
+ if (d)
+ res2 = a * tmp;
+}
+
+/* { dg-final { scan-tree-dump-not "Optimizing reciprocal sqrt multiplications" "recip" } } */
+/* { dg-final { scan-tree-dump-not "Replacing squaring multiplication" "recip" } } */
+/* { dg-final { scan-tree-dump-not "Replacing original division" "recip" } } */
diff --git a/gcc/testsuite/gcc.dg/recip_sqrt_mult_5.c b/gcc/testsuite/gcc.dg/recip_sqrt_mult_5.c
new file mode 100644
index 0000000000000000000000000000000000000000..e871f0fcd4feb1687f9815e4babf4d0667a15ea8
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/recip_sqrt_mult_5.c
@@ -0,0 +1,20 @@
+/* { dg-do compile } */
+/* { dg-options "-Ofast -fdump-tree-recip" } */
+
+/* We want to do the recip_sqrt transformations here there is already
+ a multiplication on the main path. */
+
+double res, res2, tmp;
+void
+foo (double a, double b, int c, int d)
+{
+ tmp = 1.0 / __builtin_sqrt (a);
+ res = tmp * tmp;
+
+ if (d)
+ res2 = a * tmp;
+}
+
+/* { dg-final { scan-tree-dump "Optimizing reciprocal sqrt multiplications" "recip" } } */
+/* { dg-final { scan-tree-dump "Replacing squaring multiplication" "recip" } } */
+/* { dg-final { scan-tree-dump "Replacing original division" "recip" } } */
diff --git a/gcc/tree-ssa-math-opts.c b/gcc/tree-ssa-math-opts.c
index 25378da6f4ab27dbce51e10461efc18cc416a4d7..297afcd7a8f9cfc5f1edc1a762371b2a127c66db 100644
--- a/gcc/tree-ssa-math-opts.c
+++ b/gcc/tree-ssa-math-opts.c
@@ -337,9 +337,9 @@ is_division_by (gimple *use_stmt, tree def)
&& gimple_assign_rhs1 (use_stmt) != def;
}
-/* Return whether USE_STMT is DEF * DEF. */
+/* Return TRUE if USE_STMT is a multiplication of DEF by A. */
static inline bool
-is_square_of (gimple *use_stmt, tree def)
+is_mult_by (gimple *use_stmt, tree def, tree a)
{
if (gimple_code (use_stmt) == GIMPLE_ASSIGN
&& gimple_assign_rhs_code (use_stmt) == MULT_EXPR)
@@ -347,11 +347,19 @@ is_square_of (gimple *use_stmt, tree def)
tree op0 = gimple_assign_rhs1 (use_stmt);
tree op1 = gimple_assign_rhs2 (use_stmt);
- return op0 == op1 && op0 == def;
+ return (op0 == def && op1 == a)
+ || (op0 == a && op1 == def);
}
return 0;
}
+/* Return whether USE_STMT is DEF * DEF. */
+static inline bool
+is_square_of (gimple *use_stmt, tree def)
+{
+ return is_mult_by (use_stmt, def, def);
+}
+
/* Return whether USE_STMT is a floating-point division by
DEF * DEF. */
static inline bool
@@ -526,6 +534,195 @@ free_bb (struct occurrence *occ)
}
}
+/* Transform sequences like
+ t = sqrt (a)
+ x = 1.0 / t;
+ r1 = x * x;
+ r2 = a * x;
+ into:
+ t = sqrt (a)
+ r1 = 1.0 / a;
+ r2 = t;
+ x = r1 * r2;
+ depending on the uses of x, r1, r2. This removes one multiplication and
+ allows the sqrt and division operations to execute in parallel.
+ DEF_GSI is the gsi of the initial division by sqrt that defines
+ DEF (x in the example abovs). */
+
+static void
+optimize_recip_sqrt (gimple_stmt_iterator *def_gsi, tree def)
+{
+ use_operand_p use_p;
+ imm_use_iterator use_iter;
+ gimple *stmt = gsi_stmt (*def_gsi);
+ tree x = def;
+ tree orig_sqrt_ssa_name = gimple_assign_rhs2 (stmt);
+ tree div_rhs1 = gimple_assign_rhs1 (stmt);
+
+ if (TREE_CODE (orig_sqrt_ssa_name) != SSA_NAME
+ || TREE_CODE (div_rhs1) != REAL_CST
+ || !real_equal (&TREE_REAL_CST (div_rhs1), &dconst1))
+ return;
+
+ gcall *sqrt_stmt
+ = dyn_cast <gcall *> (SSA_NAME_DEF_STMT (orig_sqrt_ssa_name));
+
+ if (!sqrt_stmt || !gimple_call_lhs (sqrt_stmt))
+ return;
+
+ switch (gimple_call_combined_fn (sqrt_stmt))
+ {
+ CASE_CFN_SQRT:
+ CASE_CFN_SQRT_FN:
+ break;
+
+ default:
+ return;
+ }
+ tree a = gimple_call_arg (sqrt_stmt, 0);
+
+ /* We have 'a' and 'x'. Now analyze the uses of 'x'. */
+
+ /* Statements that use x in x * x. Since x appears twice use an SSA_NAME
+ bitmap to avoid recording the statement twice. */
+ auto_bitmap sqr_ssa_names;
+ /* Statements that use x in a * x. */
+ auto_vec<gimple *> mult_stmts;
+ bool has_other_use = false;
+ bool mult_on_main_path = false;
+
+ FOR_EACH_IMM_USE_FAST (use_p, use_iter, x)
+ {
+ gimple *stmt2 = USE_STMT (use_p);
+ if (is_gimple_debug (stmt2))
+ continue;
+ if (is_square_of (stmt2, x))
+ {
+ bitmap_set_bit (sqr_ssa_names,
+ SSA_NAME_VERSION (gimple_assign_lhs (stmt2)));
+ if (gimple_bb (stmt2) == gimple_bb (stmt))
+ mult_on_main_path = true;
+ }
+ else if (is_mult_by (stmt2, x, a))
+ {
+ mult_stmts.safe_push (stmt2);
+ if (gimple_bb (stmt2) == gimple_bb (stmt))
+ mult_on_main_path = true;
+ }
+ else
+ has_other_use = true;
+ }
+
+ /* In the x * x and a * x cases we just rewire stmt operands or
+ remove multiplications. In the has_other_use case we introduce
+ a multiplication so make sure we don't introduce a multiplication
+ on a path where there was none. */
+ if (has_other_use && !mult_on_main_path)
+ return;
+
+ if (bitmap_empty_p (sqr_ssa_names) && mult_stmts.is_empty ())
+ return;
+
+ /* If x = 1.0 / sqrt (a) has uses other than those optimized here we want
+ to be able to compose it from the sqr and mult cases. */
+ if (has_other_use && (bitmap_empty_p (sqr_ssa_names)
+ || mult_stmts.is_empty ()))
+ return;
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "Optimizing reciprocal sqrt multiplications of\n");
+ print_gimple_stmt (dump_file, sqrt_stmt, 0, TDF_NONE);
+ print_gimple_stmt (dump_file, stmt, 0, TDF_NONE);
+ fprintf (dump_file, "\n");
+ }
+
+ bool delete_div = !has_other_use;
+ tree sqr_ssa_name = NULL_TREE;
+ if (!bitmap_empty_p (sqr_ssa_names))
+ {
+ /* r1 = x * x. Transform the original
+ x = 1.0 / t
+ into
+ tmp1 = 1.0 / a
+ r1 = tmp1. */
+
+ sqr_ssa_name
+ = make_temp_ssa_name (TREE_TYPE (a), NULL, "recip_sqrt_sqr");
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "Replacing original division\n");
+ print_gimple_stmt (dump_file, stmt, 0, TDF_NONE);
+ fprintf (dump_file, "with new division\n");
+ }
+ gimple_assign_set_lhs (stmt, sqr_ssa_name);
+ gimple_assign_set_rhs2 (stmt, a);
+ fold_stmt_inplace (def_gsi);
+ update_stmt (stmt);
+
+ if (dump_file)
+ print_gimple_stmt (dump_file, stmt, 0, TDF_NONE);
+
+ delete_div = false;
+ gimple *sqr_stmt;
+ bitmap_iterator bi;
+ unsigned int i;
+ EXECUTE_IF_SET_IN_BITMAP (sqr_ssa_names, 0, i, bi)
+ {
+ sqr_stmt = SSA_NAME_DEF_STMT (ssa_name (i));
+
+ gimple_stmt_iterator gsi2 = gsi_for_stmt (sqr_stmt);
+ gimple_assign_set_rhs_from_tree (&gsi2, sqr_ssa_name);
+ update_stmt (sqr_stmt);
+ }
+ }
+ if (!mult_stmts.is_empty ())
+ {
+ /* r2 = a * x. Transform this into:
+ r2 = t (The original sqrt (a)). */
+ unsigned int i;
+ gimple *mult_stmt = NULL;
+ FOR_EACH_VEC_ELT (mult_stmts, i, mult_stmt)
+ {
+ gimple_stmt_iterator gsi2 = gsi_for_stmt (mult_stmt);
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "Replacing squaring multiplication\n");
+ print_gimple_stmt (dump_file, mult_stmt, 0, TDF_NONE);
+ fprintf (dump_file, "with assignment\n");
+ }
+ gimple_assign_set_rhs_from_tree (&gsi2, orig_sqrt_ssa_name);
+ fold_stmt_inplace (&gsi2);
+ update_stmt (mult_stmt);
+ if (dump_file)
+ print_gimple_stmt (dump_file, mult_stmt, 0, TDF_NONE);
+ }
+ }
+
+ if (has_other_use)
+ {
+ /* Using the two temporaries tmp1, tmp2 from above
+ the original x is now:
+ x = tmp1 * tmp2. */
+ gcc_assert (orig_sqrt_ssa_name);
+ gcc_assert (sqr_ssa_name);
+
+ gimple *new_stmt
+ = gimple_build_assign (x, MULT_EXPR,
+ orig_sqrt_ssa_name, sqr_ssa_name);
+ gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
+ update_stmt (stmt);
+ }
+ else if (delete_div)
+ {
+ /* Remove the original division. */
+ gimple_stmt_iterator gsi2 = gsi_for_stmt (stmt);
+ gsi_remove (&gsi2, true);
+ release_defs (stmt);
+ }
+}
/* Look for floating-point divisions among DEF's uses, and try to
replace them by multiplications with the reciprocal. Add
@@ -546,6 +743,7 @@ execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
int sqrt_recip_count = 0;
gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && TREE_CODE (def) == SSA_NAME);
+
threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
/* If DEF is a square (x * x), count the number of divisions by x.
@@ -756,7 +954,14 @@ pass_cse_reciprocals::execute (function *fun)
&& (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
&& FLOAT_TYPE_P (TREE_TYPE (def))
&& TREE_CODE (def) == SSA_NAME)
- execute_cse_reciprocals_1 (&gsi, def);
+ {
+ if (flag_unsafe_math_optimizations
+ && is_gimple_assign (stmt)
+ && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
+ optimize_recip_sqrt (&gsi, def);
+ else
+ execute_cse_reciprocals_1 (&gsi, def);
+ }
}
if (optimize_bb_for_size_p (bb))