Richard Biener <richard.guent...@gmail.com> writes: > On Thu, Jul 27, 2017 at 2:19 PM, Richard Sandiford > <richard.sandif...@linaro.org> wrote: >> Richard Sandiford <richard.sandif...@linaro.org> writes: >>> Eric Botcazou <ebotca...@adacore.com> writes: >>>> [Sorry for missing the previous messages] >>>> >>>>> Thanks. Just been retesting, and I think I must have forgotten >>>>> to include Ada last time. It turns out that the patch causes a dg-scan >>>>> regression in gnat.dg/vect17.adb, because we now think that if the >>>>> array RECORD_TYPEs *do* alias in: >>>>> >>>>> procedure Add (X, Y : aliased Sarray; R : aliased out Sarray) is >>>>> begin >>>>> for I in Sarray'Range loop >>>>> R(I) := X(I) + Y(I); >>>>> end loop; >>>>> end; >>>>> >>>>> then the dependence distance must be zero. Eric, does that hold true >>>>> for Ada? I.e. if X and R (or Y and R) alias, must it be the case that >>>>> X(I) can only alias R(I) and not for example R(I-1) or R(I+1)? >>>> >>>> Yes, I'd think so (even without the artificial RECORD_TYPE around > the arrays). >>> >>> Good! >>> >>>>> 2017-06-07 Richard Sandiford <richard.sandif...@linaro.org> >>>>> >>>>> gcc/testsuite/ >>>>> * gnat.dg/vect17.ads (Sarray): Increase range to 1 .. 5. >>>>> * gnat.dg/vect17.adb (Add): Create a dependence distance of 1 >>>>> when X = R or Y = R. >>>> >>>> I think that you need to modify vect15 and vect16 the same way. >>> >>> Ah, yeah. And doing that shows that I'd not handled safelen for >>> DDR_COULD_BE_INDEPENDENT_P. I've fixed that locally. >>> >>> How does this look? Tested on x86_64-linux-gnu both without the >>> vectoriser changes and with the fixed vectoriser patch. >> >> Here's a version of the patch that handles safelen. I split the >> handling out into a new function (vect_analyze_possibly_independent_ddr) >> since it was getting too big to do inline. >> >> Tested on aarch64-linux-gnu and x86_64-linux-gnu. OK to install? > > Ok.
Thanks! > Did you check whether BB vectorization is affected? See > vect_slp_analyze_instance_dependence > and friends. It's quite conservative but given the prefetching change > I wonder if we need > to rule out DDR_COULD_BE_INDEPENDENT_P? I think it should be OK. When DDR_COULD_BE_INDEPENDENT_P is set, we've effectively changed from DDR_ARE_DEPENDENT == chrec_dont_know to a conservatively-correct distance vector. It looks like vect_slp_analyze_data_ref_dependence handles both cases in the same way (by returning true). Thanks, Richard > > Thanks, > Richard. > >> Thanks, >> Richard >> >> >> 2017-07-27 Richard Sandiford <richard.sandif...@linaro.org> >> >> gcc/ >> * tree-data-ref.h (subscript): Add access_fn field. >> (data_dependence_relation): Add could_be_independent_p. >> (SUB_ACCESS_FN, DDR_COULD_BE_INDEPENDENT_P): New macros. >> (same_access_functions): Move to tree-data-ref.c. >> * tree-data-ref.c (ref_contains_union_access_p): New function. >> (access_fn_component_p): Likewise. >> (access_fn_components_comparable_p): Likewise. >> (dr_analyze_indices): Add a reference to access_fn_component_p. >> (dump_data_dependence_relation): Use SUB_ACCESS_FN instead of >> DR_ACCESS_FN. >> (constant_access_functions): Likewise. >> (add_other_self_distances): Likewise. >> (same_access_functions): Likewise. (Moved from tree-data-ref.h.) >> (initialize_data_dependence_relation): Use XCNEW and remove >> explicit zeroing of DDR_REVERSED_P. Look for a subsequence >> of access functions that have the same type. Allow the >> subsequence to end with different bases in some circumstances. >> Record the chosen access functions in SUB_ACCESS_FN. >> (build_classic_dist_vector_1): Replace ddr_a and ddr_b with >> a_index and b_index. Use SUB_ACCESS_FN instead of DR_ACCESS_FN. >> (subscript_dependence_tester_1): Likewise dra and drb. >> (build_classic_dist_vector): Update calls accordingly. >> (subscript_dependence_tester): Likewise. >> * tree-ssa-loop-prefetch.c (determine_loop_nest_reuse): Check >> DDR_COULD_BE_INDEPENDENT_P. >> * tree-vectorizer.h (LOOP_REQUIRES_VERSIONING_FOR_ALIAS): Test >> comp_alias_ddrs instead of may_alias_ddrs. >> * tree-vect-data-refs.c (vect_analyze_possibly_independent_ddr): >> New function. >> (vect_analyze_data_ref_dependence): Use it if >> DDR_COULD_BE_INDEPENDENT_P, but fall back to using the recorded >> distance vectors if that fails. >> (dependence_distance_ge_vf): New function. >> (vect_prune_runtime_alias_test_list): Use it. Don't clear >> LOOP_VINFO_MAY_ALIAS_DDRS. >> >> gcc/testsuite/ >> * gcc.dg/vect/vect-alias-check-3.c: New test. >> * gcc.dg/vect/vect-alias-check-4.c: Likewise. >> * gcc.dg/vect/vect-alias-check-5.c: Likewise. >> >> Index: gcc/tree-data-ref.h >> =================================================================== >> --- gcc/tree-data-ref.h 2017-07-27 13:10:29.620045506 +0100 >> +++ gcc/tree-data-ref.h 2017-07-27 13:10:33.023912613 +0100 >> @@ -260,6 +260,9 @@ struct conflict_function >> >> struct subscript >> { >> + /* The access functions of the two references. */ >> + tree access_fn[2]; >> + >> /* A description of the iterations for which the elements are >> accessed twice. */ >> conflict_function *conflicting_iterations_in_a; >> @@ -278,6 +281,7 @@ struct subscript >> >> typedef struct subscript *subscript_p; >> >> +#define SUB_ACCESS_FN(SUB, I) (SUB)->access_fn[I] >> #define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a >> #define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b >> #define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict >> @@ -333,6 +337,33 @@ struct data_dependence_relation >> /* Set to true when the dependence relation is on the same data >> access. */ >> bool self_reference_p; >> + >> + /* True if the dependence described is conservatively correct rather >> + than exact, and if it is still possible for the accesses to be >> + conditionally independent. For example, the a and b references in: >> + >> + struct s *a, *b; >> + for (int i = 0; i < n; ++i) >> + a->f[i] += b->f[i]; >> + >> + conservatively have a distance vector of (0), for the case in which >> + a == b, but the accesses are independent if a != b. Similarly, >> + the a and b references in: >> + >> + struct s *a, *b; >> + for (int i = 0; i < n; ++i) >> + a[0].f[i] += b[i].f[i]; >> + >> + conservatively have a distance vector of (0), but they are indepenent >> + when a != b + i. In contrast, the references in: >> + >> + struct s *a; >> + for (int i = 0; i < n; ++i) >> + a->f[i] += a->f[i]; >> + >> + have the same distance vector of (0), but the accesses can never be >> + independent. */ >> + bool could_be_independent_p; >> }; >> >> typedef struct data_dependence_relation *ddr_p; >> @@ -363,6 +394,7 @@ #define DDR_DIR_VECT(DDR, I) \ >> #define DDR_DIST_VECT(DDR, I) \ >> DDR_DIST_VECTS (DDR)[I] >> #define DDR_REVERSED_P(DDR) (DDR)->reversed_p >> +#define DDR_COULD_BE_INDEPENDENT_P(DDR) (DDR)->could_be_independent_p >> >> >> bool dr_analyze_innermost (innermost_loop_behavior *, tree, struct loop *); >> @@ -457,22 +489,6 @@ same_data_refs (data_reference_p a, data >> return false; >> >> return true; >> -} >> - >> -/* Return true when the DDR contains two data references that have the >> - same access functions. */ >> - >> -static inline bool >> -same_access_functions (const struct data_dependence_relation *ddr) >> -{ >> - unsigned i; >> - >> - for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) >> - if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i), >> - DR_ACCESS_FN (DDR_B (ddr), i))) >> - return false; >> - >> - return true; >> } >> >> /* Returns true when all the dependences are computable. */ >> Index: gcc/tree-data-ref.c >> =================================================================== >> --- gcc/tree-data-ref.c 2017-07-27 13:10:29.620045506 +0100 >> +++ gcc/tree-data-ref.c 2017-07-27 13:10:33.023912613 +0100 >> @@ -124,8 +124,7 @@ Software Foundation; either version 3, o >> } dependence_stats; >> >> static bool subscript_dependence_tester_1 (struct data_dependence_relation >> *, >> - struct data_reference *, >> - struct data_reference *, >> + unsigned int, unsigned int, >> struct loop *); >> /* Returns true iff A divides B. */ >> >> @@ -145,6 +144,21 @@ int_divides_p (int a, int b) >> return ((b % a) == 0); >> } >> >> +/* Return true if reference REF contains a union access. */ >> + >> +static bool >> +ref_contains_union_access_p (tree ref) >> +{ >> + while (handled_component_p (ref)) >> + { >> + ref = TREE_OPERAND (ref, 0); >> + if (TREE_CODE (TREE_TYPE (ref)) == UNION_TYPE >> + || TREE_CODE (TREE_TYPE (ref)) == QUAL_UNION_TYPE) >> + return true; >> + } >> + return false; >> +} >> + >> >> >> /* Dump into FILE all the data references from DATAREFS. */ >> @@ -434,13 +448,14 @@ dump_data_dependence_relation (FILE *out >> unsigned int i; >> struct loop *loopi; >> >> - for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) >> + subscript *sub; >> + FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub) >> { >> fprintf (outf, " access_fn_A: "); >> - print_generic_stmt (outf, DR_ACCESS_FN (dra, i)); >> + print_generic_stmt (outf, SUB_ACCESS_FN (sub, 0)); >> fprintf (outf, " access_fn_B: "); >> - print_generic_stmt (outf, DR_ACCESS_FN (drb, i)); >> - dump_subscript (outf, DDR_SUBSCRIPT (ddr, i)); >> + print_generic_stmt (outf, SUB_ACCESS_FN (sub, 1)); >> + dump_subscript (outf, sub); >> } >> >> fprintf (outf, " inner loop index: %d\n", DDR_INNER_LOOP (ddr)); >> @@ -920,6 +935,27 @@ dr_analyze_innermost (innermost_loop_beh >> return true; >> } >> >> +/* Return true if OP is a valid component reference for a DR access >> + function. This accepts a subset of what handled_component_p accepts. */ >> + >> +static bool >> +access_fn_component_p (tree op) >> +{ >> + switch (TREE_CODE (op)) >> + { >> + case REALPART_EXPR: >> + case IMAGPART_EXPR: >> + case ARRAY_REF: >> + return true; >> + >> + case COMPONENT_REF: >> + return TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == RECORD_TYPE; >> + >> + default: >> + return false; >> + } >> +} >> + >> /* Determines the base object and the list of indices of memory reference >> DR, analyzed in LOOP and instantiated in loop nest NEST. */ >> >> @@ -957,7 +993,9 @@ dr_analyze_indices (struct data_referenc >> access_fns.safe_push (integer_one_node); >> } >> >> - /* Analyze access functions of dimensions we know to be independent. */ >> + /* Analyze access functions of dimensions we know to be independent. >> + The list of component references handled here should be kept in >> + sync with access_fn_component_p. */ >> while (handled_component_p (ref)) >> { >> if (TREE_CODE (ref) == ARRAY_REF) >> @@ -2148,6 +2186,38 @@ dr_may_alias_p (const struct data_refere >> return refs_may_alias_p (addr_a, addr_b); >> } >> >> +/* REF_A and REF_B both satisfy access_fn_component_p. Return true >> + if it is meaningful to compare their associated access functions >> + when checking for dependencies. */ >> + >> +static bool >> +access_fn_components_comparable_p (tree ref_a, tree ref_b) >> +{ >> + /* Allow pairs of component refs from the following sets: >> + >> + { REALPART_EXPR, IMAGPART_EXPR } >> + { COMPONENT_REF } >> + { ARRAY_REF }. */ >> + tree_code code_a = TREE_CODE (ref_a); >> + tree_code code_b = TREE_CODE (ref_b); >> + if (code_a == IMAGPART_EXPR) >> + code_a = REALPART_EXPR; >> + if (code_b == IMAGPART_EXPR) >> + code_b = REALPART_EXPR; >> + if (code_a != code_b) >> + return false; >> + >> + if (TREE_CODE (ref_a) == COMPONENT_REF) >> + /* ??? We cannot simply use the type of operand #0 of the refs here as >> + the Fortran compiler smuggles type punning into COMPONENT_REFs. >> + Use the DECL_CONTEXT of the FIELD_DECLs instead. */ >> + return (DECL_CONTEXT (TREE_OPERAND (ref_a, 1)) >> + == DECL_CONTEXT (TREE_OPERAND (ref_b, 1))); >> + >> + return types_compatible_p (TREE_TYPE (TREE_OPERAND (ref_a, 0)), >> + TREE_TYPE (TREE_OPERAND (ref_b, 0))); >> +} >> + >> /* Initialize a data dependence relation between data accesses A and >> B. NB_LOOPS is the number of loops surrounding the references: the >> size of the classic distance/direction vectors. */ >> @@ -2160,11 +2230,10 @@ initialize_data_dependence_relation (str >> struct data_dependence_relation *res; >> unsigned int i; >> >> - res = XNEW (struct data_dependence_relation); >> + res = XCNEW (struct data_dependence_relation); >> DDR_A (res) = a; >> DDR_B (res) = b; >> DDR_LOOP_NEST (res).create (0); >> - DDR_REVERSED_P (res) = false; >> DDR_SUBSCRIPTS (res).create (0); >> DDR_DIR_VECTS (res).create (0); >> DDR_DIST_VECTS (res).create (0); >> @@ -2182,82 +2251,277 @@ initialize_data_dependence_relation (str >> return res; >> } >> >> - /* The case where the references are exactly the same. */ >> - if (operand_equal_p (DR_REF (a), DR_REF (b), 0)) >> + unsigned int num_dimensions_a = DR_NUM_DIMENSIONS (a); >> + unsigned int num_dimensions_b = DR_NUM_DIMENSIONS (b); >> + if (num_dimensions_a == 0 || num_dimensions_b == 0) >> { >> - if ((loop_nest.exists () >> - && !object_address_invariant_in_loop_p (loop_nest[0], >> - DR_BASE_OBJECT (a))) >> - || DR_NUM_DIMENSIONS (a) == 0) >> + DDR_ARE_DEPENDENT (res) = chrec_dont_know; >> + return res; >> + } >> + >> + /* For unconstrained bases, the root (highest-indexed) subscript >> + describes a variation in the base of the original DR_REF rather >> + than a component access. We have no type that accurately describes >> + the new DR_BASE_OBJECT (whose TREE_TYPE describes the type *after* >> + applying this subscript) so limit the search to the last real >> + component access. >> + >> + E.g. for: >> + >> + void >> + f (int a[][8], int b[][8]) >> + { >> + for (int i = 0; i < 8; ++i) >> + a[i * 2][0] = b[i][0]; >> + } >> + >> + the a and b accesses have a single ARRAY_REF component reference [0] >> + but have two subscripts. */ >> + if (DR_UNCONSTRAINED_BASE (a)) >> + num_dimensions_a -= 1; >> + if (DR_UNCONSTRAINED_BASE (b)) >> + num_dimensions_b -= 1; >> + >> + /* These structures describe sequences of component references in >> + DR_REF (A) and DR_REF (B). Each component reference is tied to a >> + specific access function. */ >> + struct { >> + /* The sequence starts at DR_ACCESS_FN (A, START_A) of A and >> + DR_ACCESS_FN (B, START_B) of B (inclusive) and extends to higher >> + indices. In C notation, these are the indices of the rightmost >> + component references; e.g. for a sequence .b.c.d, the start >> + index is for .d. */ >> + unsigned int start_a; >> + unsigned int start_b; >> + >> + /* The sequence contains LENGTH consecutive access functions from >> + each DR. */ >> + unsigned int length; >> + >> + /* The enclosing objects for the A and B sequences respectively, >> + i.e. the objects to which DR_ACCESS_FN (A, START_A + LENGTH - 1) >> + and DR_ACCESS_FN (B, START_B + LENGTH - 1) are applied. */ >> + tree object_a; >> + tree object_b; >> + } full_seq = {}, struct_seq = {}; >> + >> + /* Before each iteration of the loop: >> + >> + - REF_A is what you get after applying DR_ACCESS_FN (A, INDEX_A) and >> + - REF_B is what you get after applying DR_ACCESS_FN (B, INDEX_B). */ >> + unsigned int index_a = 0; >> + unsigned int index_b = 0; >> + tree ref_a = DR_REF (a); >> + tree ref_b = DR_REF (b); >> + >> + /* Now walk the component references from the final DR_REFs back up to >> + the enclosing base objects. Each component reference corresponds >> + to one access function in the DR, with access function 0 being for >> + the final DR_REF and the highest-indexed access function being the >> + one that is applied to the base of the DR. >> + >> + Look for a sequence of component references whose access functions >> + are comparable (see access_fn_components_comparable_p). If more >> + than one such sequence exists, pick the one nearest the base >> + (which is the leftmost sequence in C notation). Store this sequence >> + in FULL_SEQ. >> + >> + For example, if we have: >> + >> + struct foo { struct bar s; ... } (*a)[10], (*b)[10]; >> + >> + A: a[0][i].s.c.d >> + B: __real b[0][i].s.e[i].f >> + >> + (where d is the same type as the real component of f) then the access >> + functions would be: >> + >> + 0 1 2 3 >> + A: .d .c .s [i] >> + >> + 0 1 2 3 4 5 >> + B: __real .f [i] .e .s [i] >> + >> + The A0/B2 column isn't comparable, since .d is a COMPONENT_REF >> + and [i] is an ARRAY_REF. However, the A1/B3 column contains two >> + COMPONENT_REF accesses for struct bar, so is comparable. Likewise >> + the A2/B4 column contains two COMPONENT_REF accesses for struct foo, >> + so is comparable. The A3/B5 column contains two ARRAY_REFs that >> + index foo[10] arrays, so is again comparable. The sequence is >> + therefore: >> + >> + A: [1, 3] (i.e. [i].s.c) >> + B: [3, 5] (i.e. [i].s.e) >> + >> + Also look for sequences of component references whose access >> + functions are comparable and whose enclosing objects have the same >> + RECORD_TYPE. Store this sequence in STRUCT_SEQ. In the above >> + example, STRUCT_SEQ would be: >> + >> + A: [1, 2] (i.e. s.c) >> + B: [3, 4] (i.e. s.e) */ >> + while (index_a < num_dimensions_a && index_b < num_dimensions_b) >> + { >> + /* REF_A and REF_B must be one of the component access types >> + allowed by dr_analyze_indices. */ >> + gcc_checking_assert (access_fn_component_p (ref_a)); >> + gcc_checking_assert (access_fn_component_p (ref_b)); >> + >> + /* Get the immediately-enclosing objects for REF_A and REF_B, >> + i.e. the references *before* applying DR_ACCESS_FN (A, INDEX_A) >> + and DR_ACCESS_FN (B, INDEX_B). */ >> + tree object_a = TREE_OPERAND (ref_a, 0); >> + tree object_b = TREE_OPERAND (ref_b, 0); >> + >> + tree type_a = TREE_TYPE (object_a); >> + tree type_b = TREE_TYPE (object_b); >> + if (access_fn_components_comparable_p (ref_a, ref_b)) >> + { >> + /* This pair of component accesses is comparable for dependence >> + analysis, so we can include DR_ACCESS_FN (A, INDEX_A) and >> + DR_ACCESS_FN (B, INDEX_B) in the sequence. */ >> + if (full_seq.start_a + full_seq.length != index_a >> + || full_seq.start_b + full_seq.length != index_b) >> + { >> + /* The accesses don't extend the current sequence, >> + so start a new one here. */ >> + full_seq.start_a = index_a; >> + full_seq.start_b = index_b; >> + full_seq.length = 0; >> + } >> + >> + /* Add this pair of references to the sequence. */ >> + full_seq.length += 1; >> + full_seq.object_a = object_a; >> + full_seq.object_b = object_b; >> + >> + /* If the enclosing objects are structures (and thus have the >> + same RECORD_TYPE), record the new sequence in STRUCT_SEQ. */ >> + if (TREE_CODE (type_a) == RECORD_TYPE) >> + struct_seq = full_seq; >> + >> + /* Move to the next containing reference for both A and B. */ >> + ref_a = object_a; >> + ref_b = object_b; >> + index_a += 1; >> + index_b += 1; >> + continue; >> + } >> + >> + /* Try to approach equal type sizes. */ >> + if (!COMPLETE_TYPE_P (type_a) >> + || !COMPLETE_TYPE_P (type_b) >> + || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_a)) >> + || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_b))) >> + break; >> + >> + unsigned HOST_WIDE_INT size_a = tree_to_uhwi (TYPE_SIZE_UNIT >> (type_a)); >> + unsigned HOST_WIDE_INT size_b = tree_to_uhwi (TYPE_SIZE_UNIT >> (type_b)); >> + if (size_a <= size_b) >> { >> - DDR_ARE_DEPENDENT (res) = chrec_dont_know; >> - return res; >> + index_a += 1; >> + ref_a = object_a; >> + } >> + if (size_b <= size_a) >> + { >> + index_b += 1; >> + ref_b = object_b; >> } >> - DDR_AFFINE_P (res) = true; >> - DDR_ARE_DEPENDENT (res) = NULL_TREE; >> - DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a)); >> - DDR_LOOP_NEST (res) = loop_nest; >> - DDR_INNER_LOOP (res) = 0; >> - DDR_SELF_REFERENCE (res) = true; >> - for (i = 0; i < DR_NUM_DIMENSIONS (a); i++) >> - { >> - struct subscript *subscript; >> - >> - subscript = XNEW (struct subscript); >> - SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known (); >> - SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known (); >> - SUB_LAST_CONFLICT (subscript) = chrec_dont_know; >> - SUB_DISTANCE (subscript) = chrec_dont_know; >> - DDR_SUBSCRIPTS (res).safe_push (subscript); >> - } >> - return res; >> } >> >> - /* If the references do not access the same object, we do not know >> - whether they alias or not. We do not care about TBAA or alignment >> - info so we can use OEP_ADDRESS_OF to avoid false negatives. >> - But the accesses have to use compatible types as otherwise the >> - built indices would not match. */ >> - if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), > OEP_ADDRESS_OF) >> - || !types_compatible_p (TREE_TYPE (DR_BASE_OBJECT (a)), >> - TREE_TYPE (DR_BASE_OBJECT (b)))) >> + /* See whether FULL_SEQ ends at the base and whether the two bases >> + are equal. We do not care about TBAA or alignment info so we can >> + use OEP_ADDRESS_OF to avoid false negatives. */ >> + tree base_a = DR_BASE_OBJECT (a); >> + tree base_b = DR_BASE_OBJECT (b); >> + bool same_base_p = (full_seq.start_a + full_seq.length == num_dimensions_a >> + && full_seq.start_b + full_seq.length == num_dimensions_b >> + && DR_UNCONSTRAINED_BASE (a) == DR_UNCONSTRAINED_BASE (b) >> + && operand_equal_p (base_a, base_b, OEP_ADDRESS_OF) >> + && types_compatible_p (TREE_TYPE (base_a), >> + TREE_TYPE (base_b)) >> + && (!loop_nest.exists () >> + || (object_address_invariant_in_loop_p >> + (loop_nest[0], base_a)))); >> + >> + /* If the bases are the same, we can include the base variation too. >> + E.g. the b accesses in: >> + >> + for (int i = 0; i < n; ++i) >> + b[i + 4][0] = b[i][0]; >> + >> + have a definite dependence distance of 4, while for: >> + >> + for (int i = 0; i < n; ++i) >> + a[i + 4][0] = b[i][0]; >> + >> + the dependence distance depends on the gap between a and b. >> + >> + If the bases are different then we can only rely on the sequence >> + rooted at a structure access, since arrays are allowed to overlap >> + arbitrarily and change shape arbitrarily. E.g. we treat this as >> + valid code: >> + >> + int a[256]; >> + ... >> + ((int (*)[4][3]) &a[1])[i][0] += ((int (*)[4][3]) &a[2])[i][0]; >> + >> + where two lvalues with the same int[4][3] type overlap, and where >> + both lvalues are distinct from the object's declared type. */ >> + if (same_base_p) >> { >> - DDR_ARE_DEPENDENT (res) = chrec_dont_know; >> - return res; >> + if (DR_UNCONSTRAINED_BASE (a)) >> + full_seq.length += 1; >> } >> + else >> + full_seq = struct_seq; >> >> - /* If the base of the object is not invariant in the loop nest, we cannot >> - analyze it. TODO -- in fact, it would suffice to record that there may >> - be arbitrary dependences in the loops where the base object varies. */ >> - if ((loop_nest.exists () >> - && !object_address_invariant_in_loop_p (loop_nest[0], DR_BASE_OBJECT > (a))) >> - || DR_NUM_DIMENSIONS (a) == 0) >> + /* Punt if we didn't find a suitable sequence. */ >> + if (full_seq.length == 0) >> { >> DDR_ARE_DEPENDENT (res) = chrec_dont_know; >> return res; >> } >> >> - /* If the number of dimensions of the access to not agree we can have >> - a pointer access to a component of the array element type and an >> - array access while the base-objects are still the same. Punt. */ >> - if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b)) >> + if (!same_base_p) >> { >> - DDR_ARE_DEPENDENT (res) = chrec_dont_know; >> - return res; >> + /* Partial overlap is possible for different bases when strict >> aliasing >> + is not in effect. It's also possible if either base involves a >> union >> + access; e.g. for: >> + >> + struct s1 { int a[2]; }; >> + struct s2 { struct s1 b; int c; }; >> + struct s3 { int d; struct s1 e; }; >> + union u { struct s2 f; struct s3 g; } *p, *q; >> + >> + the s1 at "p->f.b" (base "p->f") partially overlaps the s1 at >> + "p->g.e" (base "p->g") and might partially overlap the s1 at >> + "q->g.e" (base "q->g"). */ >> + if (!flag_strict_aliasing >> + || ref_contains_union_access_p (full_seq.object_a) >> + || ref_contains_union_access_p (full_seq.object_b)) >> + { >> + DDR_ARE_DEPENDENT (res) = chrec_dont_know; >> + return res; >> + } >> + >> + DDR_COULD_BE_INDEPENDENT_P (res) = true; >> } >> >> DDR_AFFINE_P (res) = true; >> DDR_ARE_DEPENDENT (res) = NULL_TREE; >> - DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a)); >> + DDR_SUBSCRIPTS (res).create (full_seq.length); >> DDR_LOOP_NEST (res) = loop_nest; >> DDR_INNER_LOOP (res) = 0; >> DDR_SELF_REFERENCE (res) = false; >> >> - for (i = 0; i < DR_NUM_DIMENSIONS (a); i++) >> + for (i = 0; i < full_seq.length; ++i) >> { >> struct subscript *subscript; >> >> subscript = XNEW (struct subscript); >> + SUB_ACCESS_FN (subscript, 0) = DR_ACCESS_FN (a, full_seq.start_a + i); >> + SUB_ACCESS_FN (subscript, 1) = DR_ACCESS_FN (b, full_seq.start_b + i); >> SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known (); >> SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known (); >> SUB_LAST_CONFLICT (subscript) = chrec_dont_know; >> @@ -3839,14 +4103,15 @@ add_outer_distances (struct data_depende >> } >> >> /* Return false when fail to represent the data dependence as a >> - distance vector. INIT_B is set to true when a component has been >> + distance vector. A_INDEX is the index of the first reference >> + (0 for DDR_A, 1 for DDR_B) and B_INDEX is the index of the >> + second reference. INIT_B is set to true when a component has been >> added to the distance vector DIST_V. INDEX_CARRY is then set to >> the index in DIST_V that carries the dependence. */ >> >> static bool >> build_classic_dist_vector_1 (struct data_dependence_relation *ddr, >> - struct data_reference *ddr_a, >> - struct data_reference *ddr_b, >> + unsigned int a_index, unsigned int b_index, >> lambda_vector dist_v, bool *init_b, >> int *index_carry) >> { >> @@ -3864,8 +4129,8 @@ build_classic_dist_vector_1 (struct data >> return false; >> } >> >> - access_fn_a = DR_ACCESS_FN (ddr_a, i); >> - access_fn_b = DR_ACCESS_FN (ddr_b, i); >> + access_fn_a = SUB_ACCESS_FN (subscript, a_index); >> + access_fn_b = SUB_ACCESS_FN (subscript, b_index); >> >> if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC >> && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC) >> @@ -3925,10 +4190,11 @@ build_classic_dist_vector_1 (struct data >> constant_access_functions (const struct data_dependence_relation *ddr) >> { >> unsigned i; >> + subscript *sub; >> >> - for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) >> - if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr), i)) >> - || !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr), i))) >> + FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub) >> + if (!evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 0)) >> + || !evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 1))) >> return false; >> >> return true; >> @@ -3991,10 +4257,11 @@ add_other_self_distances (struct data_de >> lambda_vector dist_v; >> unsigned i; >> int index_carry = DDR_NB_LOOPS (ddr); >> + subscript *sub; >> >> - for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) >> + FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub) >> { >> - tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i); >> + tree access_fun = SUB_ACCESS_FN (sub, 0); >> >> if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC) >> { >> @@ -4006,7 +4273,7 @@ add_other_self_distances (struct data_de >> return; >> } >> >> - access_fun = DR_ACCESS_FN (DDR_A (ddr), 0); >> + access_fun = SUB_ACCESS_FN (DDR_SUBSCRIPT (ddr, 0), 0); >> >> if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC) >> add_multivariate_self_dist (ddr, access_fun); >> @@ -4077,6 +4344,23 @@ add_distance_for_zero_overlaps (struct d >> } >> } >> >> +/* Return true when the DDR contains two data references that have the >> + same access functions. */ >> + >> +static inline bool >> +same_access_functions (const struct data_dependence_relation *ddr) >> +{ >> + unsigned i; >> + subscript *sub; >> + >> + FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub) >> + if (!eq_evolutions_p (SUB_ACCESS_FN (sub, 0), >> + SUB_ACCESS_FN (sub, 1))) >> + return false; >> + >> + return true; >> +} >> + >> /* Compute the classic per loop distance vector. DDR is the data >> dependence relation to build a vector from. Return false when fail >> to represent the data dependence as a distance vector. */ >> @@ -4108,8 +4392,7 @@ build_classic_dist_vector (struct data_d >> } >> >> dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); >> - if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr), >> - dist_v, &init_b, &index_carry)) >> + if (!build_classic_dist_vector_1 (ddr, 0, 1, dist_v, &init_b, > &index_carry)) >> return false; >> >> /* Save the distance vector if we initialized one. */ >> @@ -4142,12 +4425,11 @@ build_classic_dist_vector (struct data_d >> if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr))) >> { >> lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); >> - if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr), >> - loop_nest)) >> + if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest)) >> return false; >> compute_subscript_distance (ddr); >> - if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr), >> - save_v, &init_b, &index_carry)) >> + if (!build_classic_dist_vector_1 (ddr, 1, 0, save_v, &init_b, >> + &index_carry)) >> return false; >> save_dist_v (ddr, save_v); >> DDR_REVERSED_P (ddr) = true; >> @@ -4183,12 +4465,10 @@ build_classic_dist_vector (struct data_d >> { >> lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); >> >> - if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), >> - DDR_A (ddr), loop_nest)) >> + if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest)) >> return false; >> compute_subscript_distance (ddr); >> - if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A >> (ddr), >> - opposite_v, &init_b, >> + if (!build_classic_dist_vector_1 (ddr, 1, 0, opposite_v, &init_b, >> &index_carry)) >> return false; >> >> @@ -4267,13 +4547,13 @@ build_classic_dir_vector (struct data_de >> } >> } >> >> -/* Helper function. Returns true when there is a dependence between >> - data references DRA and DRB. */ >> +/* Helper function. Returns true when there is a dependence between the >> + data references. A_INDEX is the index of the first reference (0 for >> + DDR_A, 1 for DDR_B) and B_INDEX is the index of the second reference. */ >> >> static bool >> subscript_dependence_tester_1 (struct data_dependence_relation *ddr, >> - struct data_reference *dra, >> - struct data_reference *drb, >> + unsigned int a_index, unsigned int b_index, >> struct loop *loop_nest) >> { >> unsigned int i; >> @@ -4285,8 +4565,8 @@ subscript_dependence_tester_1 (struct da >> { >> conflict_function *overlaps_a, *overlaps_b; >> >> - analyze_overlapping_iterations (DR_ACCESS_FN (dra, i), >> - DR_ACCESS_FN (drb, i), >> + analyze_overlapping_iterations (SUB_ACCESS_FN (subscript, a_index), >> + SUB_ACCESS_FN (subscript, b_index), >> &overlaps_a, &overlaps_b, >> &last_conflicts, loop_nest); >> >> @@ -4335,7 +4615,7 @@ subscript_dependence_tester_1 (struct da >> subscript_dependence_tester (struct data_dependence_relation *ddr, >> struct loop *loop_nest) >> { >> - if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr), > loop_nest)) >> + if (subscript_dependence_tester_1 (ddr, 0, 1, loop_nest)) >> dependence_stats.num_dependence_dependent++; >> >> compute_subscript_distance (ddr); >> Index: gcc/tree-ssa-loop-prefetch.c >> =================================================================== >> --- gcc/tree-ssa-loop-prefetch.c 2017-07-27 13:10:29.620045506 +0100 >> +++ gcc/tree-ssa-loop-prefetch.c 2017-07-27 13:10:33.023912613 +0100 >> @@ -1668,6 +1668,7 @@ determine_loop_nest_reuse (struct loop * >> refb = (struct mem_ref *) DDR_B (dep)->aux; >> >> if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know >> + || DDR_COULD_BE_INDEPENDENT_P (dep) >> || DDR_NUM_DIST_VECTS (dep) == 0) >> { >> /* If the dependence cannot be analyzed, assume that there might be >> Index: gcc/tree-vectorizer.h >> =================================================================== >> --- gcc/tree-vectorizer.h 2017-07-27 13:10:29.620045506 +0100 >> +++ gcc/tree-vectorizer.h 2017-07-27 13:10:33.024912868 +0100 >> @@ -358,7 +358,7 @@ #define LOOP_VINFO_ORIG_LOOP_INFO(L) >> #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \ >> ((L)->may_misalign_stmts.length () > 0) >> #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \ >> - ((L)->may_alias_ddrs.length () > 0) >> + ((L)->comp_alias_ddrs.length () > 0) >> #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \ >> (LOOP_VINFO_NITERS_ASSUMPTIONS (L)) >> #define LOOP_REQUIRES_VERSIONING(L) \ >> Index: gcc/tree-vect-data-refs.c >> =================================================================== >> --- gcc/tree-vect-data-refs.c 2017-07-27 13:10:29.620045506 +0100 >> +++ gcc/tree-vect-data-refs.c 2017-07-27 13:10:33.024912868 +0100 >> @@ -160,6 +160,60 @@ vect_mark_for_runtime_alias_test (ddr_p >> } >> >> >> +/* A subroutine of vect_analyze_data_ref_dependence. Handle >> + DDR_COULD_BE_INDEPENDENT_P ddr DDR that has a known set of dependence >> + distances. These distances are conservatively correct but they don't >> + reflect a guaranteed dependence. >> + >> + Return true if this function does all the work necessary to avoid >> + an alias or false if the caller should use the dependence distances >> + to limit the vectorization factor in the usual way. LOOP_DEPTH is >> + the depth of the loop described by LOOP_VINFO and the other arguments >> + are as for vect_analyze_data_ref_dependence. */ >> + >> +static bool >> +vect_analyze_possibly_independent_ddr (data_dependence_relation *ddr, >> + loop_vec_info loop_vinfo, >> + int loop_depth, int *max_vf) >> +{ >> + struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); >> + lambda_vector dist_v; >> + unsigned int i; >> + FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v) >> + { >> + int dist = dist_v[loop_depth]; >> + if (dist != 0 && !(dist > 0 && DDR_REVERSED_P (ddr))) >> + { >> + /* If the user asserted safelen >= DIST consecutive iterations >> + can be executed concurrently, assume independence. >> + >> + ??? An alternative would be to add the alias check even >> + in this case, and vectorize the fallback loop with the >> + maximum VF set to safelen. However, if the user has >> + explicitly given a length, it's less likely that that >> + would be a win. */ >> + if (loop->safelen >= 2 && abs_hwi (dist) <= loop->safelen) >> + { >> + if (loop->safelen < *max_vf) >> + *max_vf = loop->safelen; >> + LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false; >> + continue; >> + } >> + >> + /* For dependence distances of 2 or more, we have the option >> + of limiting VF or checking for an alias at runtime. >> + Prefer to check at runtime if we can, to avoid limiting >> + the VF unnecessarily when the bases are in fact independent. >> + >> + Note that the alias checks will be removed if the VF ends up >> + being small enough. */ >> + return vect_mark_for_runtime_alias_test (ddr, loop_vinfo); >> + } >> + } >> + return true; >> +} >> + >> + >> /* Function vect_analyze_data_ref_dependence. >> >> Return TRUE if there (might) exist a dependence between a >> memory-reference >> @@ -305,6 +359,12 @@ vect_analyze_data_ref_dependence (struct >> } >> >> loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr)); >> + >> + if (DDR_COULD_BE_INDEPENDENT_P (ddr) >> + && vect_analyze_possibly_independent_ddr (ddr, loop_vinfo, >> + loop_depth, max_vf)) >> + return false; >> + >> FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v) >> { >> int dist = dist_v[loop_depth]; >> @@ -2878,6 +2938,44 @@ vect_no_alias_p (struct data_reference * >> return false; >> } >> >> +/* Return true if the minimum nonzero dependence distance for loop >> LOOP_DEPTH >> + in DDR is >= VF. */ >> + >> +static bool >> +dependence_distance_ge_vf (data_dependence_relation *ddr, >> + unsigned int loop_depth, unsigned HOST_WIDE_INT >> vf) >> +{ >> + if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE >> + || DDR_NUM_DIST_VECTS (ddr) == 0) >> + return false; >> + >> + /* If the dependence is exact, we should have limited the VF instead. */ >> + gcc_checking_assert (DDR_COULD_BE_INDEPENDENT_P (ddr)); >> + >> + unsigned int i; >> + lambda_vector dist_v; >> + FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v) >> + { >> + HOST_WIDE_INT dist = dist_v[loop_depth]; >> + if (dist != 0 >> + && !(dist > 0 && DDR_REVERSED_P (ddr)) >> + && (unsigned HOST_WIDE_INT) abs_hwi (dist) < vf) >> + return false; >> + } >> + >> + if (dump_enabled_p ()) >> + { >> + dump_printf_loc (MSG_NOTE, vect_location, >> + "dependence distance between "); >> + dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr))); >> + dump_printf (MSG_NOTE, " and "); >> + dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr))); >> + dump_printf (MSG_NOTE, " is >= VF\n"); >> + } >> + >> + return true; >> +} >> + >> /* Function vect_prune_runtime_alias_test_list. >> >> Prune a list of ddrs to be tested at run-time by versioning for alias. >> @@ -2908,6 +3006,10 @@ vect_prune_runtime_alias_test_list (loop >> >> comp_alias_ddrs.create (may_alias_ddrs.length ()); >> >> + unsigned int loop_depth >> + = index_in_loop_nest (LOOP_VINFO_LOOP (loop_vinfo)->num, >> + LOOP_VINFO_LOOP_NEST (loop_vinfo)); >> + >> /* First, we collect all data ref pairs for aliasing checks. */ >> FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr) >> { >> @@ -2917,6 +3019,11 @@ vect_prune_runtime_alias_test_list (loop >> tree segment_length_a, segment_length_b; >> gimple *stmt_a, *stmt_b; >> >> + /* Ignore the alias if the VF we chose ended up being no greater >> + than the dependence distance. */ >> + if (dependence_distance_ge_vf (ddr, loop_depth, vect_factor)) >> + continue; >> + >> dr_a = DDR_A (ddr); >> stmt_a = DR_STMT (DDR_A (ddr)); >> dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a)); >> @@ -2993,10 +3100,6 @@ vect_prune_runtime_alias_test_list (loop >> return false; >> } >> >> - /* All alias checks have been resolved at compilation time. */ >> - if (!comp_alias_ddrs.length ()) >> - LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).truncate (0); >> - >> return true; >> } >> >> Index: gcc/testsuite/gcc.dg/vect/vect-alias-check-3.c >> =================================================================== >> --- /dev/null 2017-07-27 10:25:31.671280760 +0100 >> +++ gcc/testsuite/gcc.dg/vect/vect-alias-check-3.c 2017-07-27 > 13:10:33.022912357 +0100 >> @@ -0,0 +1,120 @@ >> +/* { dg-do compile } */ >> +/* { dg-require-effective-target vect_int } */ >> +/* { dg-additional-options "--param > vect-max-version-for-alias-checks=0 -fopenmp-simd" } */ >> + >> +/* Intended to be larger than any VF. */ >> +#define GAP 128 >> +#define N (GAP * 3) >> + >> +struct s { int x[N + 1]; }; >> +struct t { struct s x[N + 1]; }; >> +struct u { int x[N + 1]; int y; }; >> +struct v { struct s s; }; >> + >> +void >> +f1 (struct s *a, struct s *b) >> +{ >> + for (int i = 0; i < N; ++i) >> + a->x[i] += b->x[i]; >> +} >> + >> +void >> +f2 (struct s *a, struct s *b) >> +{ >> + for (int i = 0; i < N; ++i) >> + a[1].x[i] += b[2].x[i]; >> +} >> + >> +void >> +f3 (struct s *a, struct s *b) >> +{ >> + for (int i = 0; i < N; ++i) >> + a[1].x[i] += b[i].x[i]; >> +} >> + >> +void >> +f4 (struct s *a, struct s *b) >> +{ >> + for (int i = 0; i < N; ++i) >> + a[i].x[i] += b[i].x[i]; >> +} >> + >> +void >> +f5 (struct s *a, struct s *b) >> +{ >> + for (int i = 0; i < N; ++i) >> + a->x[i] += b->x[i + 1]; >> +} >> + >> +void >> +f6 (struct s *a, struct s *b) >> +{ >> + for (int i = 0; i < N; ++i) >> + a[1].x[i] += b[2].x[i + 1]; >> +} >> + >> +void >> +f7 (struct s *a, struct s *b) >> +{ >> + for (int i = 0; i < N; ++i) >> + a[1].x[i] += b[i].x[i + 1]; >> +} >> + >> +void >> +f8 (struct s *a, struct s *b) >> +{ >> + for (int i = 0; i < N; ++i) >> + a[i].x[i] += b[i].x[i + 1]; >> +} >> + >> +void >> +f9 (struct s *a, struct t *b) >> +{ >> + for (int i = 0; i < N; ++i) >> + a->x[i] += b->x[1].x[i]; >> +} >> + >> +void >> +f10 (struct s *a, struct t *b) >> +{ >> + for (int i = 0; i < N; ++i) >> + a->x[i] += b->x[i].x[i]; >> +} >> + >> +void >> +f11 (struct u *a, struct u *b) >> +{ >> + for (int i = 0; i < N; ++i) >> + a->x[i] += b->x[i] + b[i].y; >> +} >> + >> +void >> +f12 (struct s *a, struct s *b) >> +{ >> + for (int i = 0; i < GAP; ++i) >> + a->x[i + GAP] += b->x[i]; >> +} >> + >> +void >> +f13 (struct s *a, struct s *b) >> +{ >> + for (int i = 0; i < GAP * 2; ++i) >> + a->x[i + GAP] += b->x[i]; >> +} >> + >> +void >> +f14 (struct v *a, struct s *b) >> +{ >> + for (int i = 0; i < N; ++i) >> + a->s.x[i] = b->x[i]; >> +} >> + >> +void >> +f15 (struct s *a, struct s *b) >> +{ >> + #pragma omp simd safelen(N) >> + for (int i = 0; i < N; ++i) >> + a->x[i + 1] += b->x[i]; >> +} >> + >> +/* { dg-final { scan-tree-dump-times "LOOP VECTORIZED" 15 "vect" } } */ >> Index: gcc/testsuite/gcc.dg/vect/vect-alias-check-4.c >> =================================================================== >> --- /dev/null 2017-07-27 10:25:31.671280760 +0100 >> +++ gcc/testsuite/gcc.dg/vect/vect-alias-check-4.c 2017-07-27 > 13:10:33.022912357 +0100 >> @@ -0,0 +1,35 @@ >> +/* { dg-do compile } */ >> +/* { dg-require-effective-target vect_int } */ >> +/* { dg-additional-options "--param vect-max-version-for-alias-checks=0" } >> */ >> + >> +#define N 16 >> + >> +struct s1 { int a[N]; }; >> +struct s2 { struct s1 b; int c; }; >> +struct s3 { int d; struct s1 e; }; >> +union u { struct s2 f; struct s3 g; }; >> + >> +/* We allow a and b to overlap arbitrarily. */ >> + >> +void >> +f1 (int a[][N], int b[][N]) >> +{ >> + for (int i = 0; i < N; ++i) >> + a[0][i] += b[0][i]; >> +} >> + >> +void >> +f2 (union u *a, union u *b) >> +{ >> + for (int i = 0; i < N; ++i) >> + a->f.b.a[i] += b->g.e.a[i]; >> +} >> + >> +void >> +f3 (struct s1 *a, struct s1 *b) >> +{ >> + for (int i = 0; i < N - 1; ++i) >> + a->a[i + 1] += b->a[i]; >> +} >> + >> +/* { dg-final { scan-tree-dump-not "LOOP VECTORIZED" "vect" } } */ >> Index: gcc/testsuite/gcc.dg/vect/vect-alias-check-5.c >> =================================================================== >> --- /dev/null 2017-07-27 10:25:31.671280760 +0100 >> +++ gcc/testsuite/gcc.dg/vect/vect-alias-check-5.c 2017-07-27 > 13:10:33.022912357 +0100 >> @@ -0,0 +1,19 @@ >> +/* { dg-do compile } */ >> +/* { dg-require-effective-target vect_int } */ >> + >> +/* Intended to be larger than any VF. */ >> +#define GAP 128 >> +#define N (GAP * 3) >> + >> +struct s { int x[N]; }; >> + >> +void >> +f1 (struct s *a, struct s *b) >> +{ >> + for (int i = 0; i < GAP * 2; ++i) >> + a->x[i + GAP] += b->x[i]; >> +} >> + >> +/* { dg-final { scan-tree-dump-times "consider run-time aliasing" 1 > "vect" } } */ >> +/* { dg-final { scan-tree-dump-times "improved number of alias checks > from 1 to 0" 1 "vect" } } */ >> +/* { dg-final { scan-tree-dump-times "LOOP VECTORIZED" 1 "vect" } } */