"Bin.Cheng" <amker.ch...@gmail.com> writes: > On Wed, May 3, 2017 at 9:00 AM, Richard Sandiford > <richard.sandif...@linaro.org> wrote: >> Index: gcc/tree-data-ref.h >> =================================================================== >> --- gcc/tree-data-ref.h 2017-05-03 08:48:11.977015306 +0100 >> +++ gcc/tree-data-ref.h 2017-05-03 08:48:48.737038502 +0100 >> @@ -191,6 +191,9 @@ struct conflict_function >> >> struct subscript >> { >> + /* The access functions of the two references. */ >> + tree access_fn[2]; > Is it better to follow existing code, i.e, name this as > access_fn_a/access_fn_b. Thus we don't need to use const value 0/1 in > various places, which is a little bit confusing.
[Answered below] >> + >> /* A description of the iterations for which the elements are >> accessed twice. */ >> conflict_function *conflicting_iterations_in_a; >> @@ -209,6 +212,7 @@ struct subscript >> >> typedef struct subscript *subscript_p; >> >> +#define SUB_ACCESS_FN(SUB, I) (SUB)->access_fn[I] >> #define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a >> #define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b >> #define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict >> @@ -264,6 +268,33 @@ struct data_dependence_relation >> /* Set to true when the dependence relation is on the same data >> access. */ >> bool self_reference_p; >> + >> + /* True if the dependence described is conservatively correct rather >> + than exact, and if it is still possible for the accesses to be >> + conditionally independent. For example, the a and b references in: >> + >> + struct s *a, *b; >> + for (int i = 0; i < n; ++i) >> + a->f[i] += b->f[i]; >> + >> + conservatively have a distance vector of (0), for the case in which >> + a == b, but the accesses are independent if a != b. Similarly, >> + the a and b references in: >> + >> + struct s *a, *b; >> + for (int i = 0; i < n; ++i) >> + a[0].f[i] += b[i].f[i]; >> + >> + conservatively have a distance vector of (0), but they are indepenent >> + when a != b + i. In contrast, the references in: >> + >> + struct s *a; >> + for (int i = 0; i < n; ++i) >> + a->f[i] += a->f[i]; >> + >> + have the same distance vector of (0), but the accesses can never be >> + independent. */ >> + bool could_be_independent_p; >> }; >> >> typedef struct data_dependence_relation *ddr_p; >> @@ -294,6 +325,7 @@ #define DDR_DIR_VECT(DDR, I) \ >> #define DDR_DIST_VECT(DDR, I) \ >> DDR_DIST_VECTS (DDR)[I] >> #define DDR_REVERSED_P(DDR) (DDR)->reversed_p >> +#define DDR_COULD_BE_INDEPENDENT_P(DDR) (DDR)->could_be_independent_p >> >> >> bool dr_analyze_innermost (struct data_reference *, struct loop *); >> @@ -372,22 +404,6 @@ same_data_refs (data_reference_p a, data >> return false; >> >> return true; >> -} >> - >> -/* Return true when the DDR contains two data references that have the >> - same access functions. */ >> - >> -static inline bool >> -same_access_functions (const struct data_dependence_relation *ddr) >> -{ >> - unsigned i; >> - >> - for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) >> - if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i), >> - DR_ACCESS_FN (DDR_B (ddr), i))) >> - return false; >> - >> - return true; >> } >> >> /* Returns true when all the dependences are computable. */ >> Index: gcc/tree-data-ref.c >> =================================================================== >> --- gcc/tree-data-ref.c 2017-02-23 19:54:15.000000000 +0000 >> +++ gcc/tree-data-ref.c 2017-05-03 08:48:48.737038502 +0100 >> @@ -123,8 +123,7 @@ Software Foundation; either version 3, o >> } dependence_stats; >> >> static bool subscript_dependence_tester_1 (struct data_dependence_relation >> *, >> - struct data_reference *, >> - struct data_reference *, >> + unsigned int, unsigned int, >> struct loop *); > As mentioned, how about passing access_fn directly, rather than less > meaningful 0/1 values? The problem is that access_fn is a property of the individual subscripts, whereas this is operating on a full data_reference. One alternative would be to use conditions like: first_is_a ? SUB_ACCESS_FN_A (sub) : SUB_ACCESS_FN_B (sub) but IMO that's less readable than the existing: SUB_ACCESS_FN (sub, index) Or we could have individual access_fn arrays for A and B, separate from the main subscript array, but that would mean allocating three arrays instead of one. >> /* Returns true iff A divides B. */ >> >> @@ -144,6 +143,21 @@ int_divides_p (int a, int b) >> return ((b % a) == 0); >> } >> >> +/* Return true if reference REF contains a union access. */ >> + >> +static bool >> +ref_contains_union_access_p (tree ref) >> +{ >> + while (handled_component_p (ref)) >> + { >> + ref = TREE_OPERAND (ref, 0); >> + if (TREE_CODE (TREE_TYPE (ref)) == UNION_TYPE >> + || TREE_CODE (TREE_TYPE (ref)) == QUAL_UNION_TYPE) >> + return true; >> + } >> + return false; >> +} >> + >> >> >> /* Dump into FILE all the data references from DATAREFS. */ >> @@ -433,13 +447,14 @@ dump_data_dependence_relation (FILE *out >> unsigned int i; >> struct loop *loopi; >> >> - for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) >> + subscript *sub; >> + FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub) >> { >> fprintf (outf, " access_fn_A: "); >> - print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0); >> + print_generic_stmt (outf, SUB_ACCESS_FN (sub, 0), 0); >> fprintf (outf, " access_fn_B: "); >> - print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0); >> - dump_subscript (outf, DDR_SUBSCRIPT (ddr, i)); >> + print_generic_stmt (outf, SUB_ACCESS_FN (sub, 1), 0); >> + dump_subscript (outf, sub); >> } >> >> fprintf (outf, " inner loop index: %d\n", DDR_INNER_LOOP (ddr)); >> @@ -1484,11 +1499,10 @@ initialize_data_dependence_relation (str >> struct data_dependence_relation *res; >> unsigned int i; >> >> - res = XNEW (struct data_dependence_relation); >> + res = XCNEW (struct data_dependence_relation); >> DDR_A (res) = a; >> DDR_B (res) = b; >> DDR_LOOP_NEST (res).create (0); >> - DDR_REVERSED_P (res) = false; >> DDR_SUBSCRIPTS (res).create (0); >> DDR_DIR_VECTS (res).create (0); >> DDR_DIST_VECTS (res).create (0); >> @@ -1506,82 +1520,217 @@ initialize_data_dependence_relation (str >> return res; >> } >> >> - /* The case where the references are exactly the same. */ >> - if (operand_equal_p (DR_REF (a), DR_REF (b), 0)) >> + unsigned int num_dimensions_a = DR_NUM_DIMENSIONS (a); >> + unsigned int num_dimensions_b = DR_NUM_DIMENSIONS (b); >> + if (num_dimensions_a == 0 || num_dimensions_b == 0) >> { >> - if ((loop_nest.exists () >> - && !object_address_invariant_in_loop_p (loop_nest[0], >> - DR_BASE_OBJECT (a))) >> - || DR_NUM_DIMENSIONS (a) == 0) >> - { >> - DDR_ARE_DEPENDENT (res) = chrec_dont_know; >> - return res; >> - } >> - DDR_AFFINE_P (res) = true; >> - DDR_ARE_DEPENDENT (res) = NULL_TREE; >> - DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a)); >> - DDR_LOOP_NEST (res) = loop_nest; >> - DDR_INNER_LOOP (res) = 0; >> - DDR_SELF_REFERENCE (res) = true; >> - for (i = 0; i < DR_NUM_DIMENSIONS (a); i++) >> - { >> - struct subscript *subscript; >> + DDR_ARE_DEPENDENT (res) = chrec_dont_know; >> + return res; >> + } >> + >> + /* For unconstrained bases, the outer (highest-index) subscript >> + describes a variation in the base of the original DR_REF rather >> + than a component access. We have no type that accurately describes >> + the new DR_BASE_OBJECT (whose TREE_TYPE describes the type *after* >> + applying the outer subscript) so limit the search to the last real >> + component access. >> + >> + E.g. for: >> >> - subscript = XNEW (struct subscript); >> - SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known (); >> - SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known (); >> - SUB_LAST_CONFLICT (subscript) = chrec_dont_know; >> - SUB_DISTANCE (subscript) = chrec_dont_know; >> - DDR_SUBSCRIPTS (res).safe_push (subscript); >> + void >> + f (int a[][8], int b[][8]) >> + { >> + for (int i = 0; i < 8; ++i) >> + a[i * 2][0] = b[i][0]; >> } >> - return res; >> + >> + the a and b accesses have a single ARRAY_REF component reference [0] >> + but have two subscripts. */ >> + if (DR_UNCONSTRAINED_BASE (a)) >> + num_dimensions_a -= 1; >> + if (DR_UNCONSTRAINED_BASE (b)) >> + num_dimensions_b -= 1; >> + >> + /* Now look for two sequences of component references that have the same >> + type in both A and B. The first sequence includes an arbitrary mixture >> + of array and structure references while the second always ends on a >> + structure reference. >> + >> + The former (arbitrary) sequence uses access functions: >> + >> + [START_A, START_A + NUM_DIMENSIONS) of A >> + [START_B, START_B + NUM_DIMENSIONS) of B >> + >> + The latter sequence uses access functions: >> + >> + [STRUCT_START_A, STRUCT_START_A + STRUCT_NUM_DIMENSIONS) of A >> + [STRUCT_START_B, STRUCT_START_B + STRUCT_NUM_DIMENSIONS) of B >> + >> + STRUCT_REF_A and STRUCT_REF_B are the outer references for the > IIUC, A and B always share the same latter sequence, and the common > latter sequence ends at a structure reference providing alias > information. The A and B accesses aren't necessarily the same, they just have the compatible types. E.g. for: struct s { int x[8]; int y[8]; } *a, *b; ... a->x[0] = b->y[1] ... the sequence would include: a: [0] .x b: [1] .y > Is it possible to record the the former arbitrary > references instead of simple flag DDR_COULD_BE_INDEPENDENT_P. With > this information, alias check can be simplified by stripping away > address computation for the shared common sub-sequence. I doubt > vect_create_cond_for_alias_checks could detect this kind CSE for now. > Ah, I see you changed alias check code generation in order to handle > this. The num_dimensions sequence is only used if it ends at the original base and if the bases are equal. In other cases it doesn't really help. The struct_num_dimensions sequence is meant to be the one that is helpful even when the bases aren't equal. Like you say, there's a follow-on patch that uses this for runtime alias checking. >> + latter sequence. */ >> + unsigned int start_a = 0; >> + unsigned int start_b = 0; >> + unsigned int num_dimensions = 0; >> + unsigned int struct_start_a = 0; >> + unsigned int struct_start_b = 0; >> + unsigned int struct_num_dimensions = 0; >> + unsigned int index_a = 0; >> + unsigned int index_b = 0; >> + tree next_ref_a = DR_REF (a); >> + tree next_ref_b = DR_REF (b); >> + tree struct_ref_a = NULL_TREE; >> + tree struct_ref_b = NULL_TREE; >> + while (index_a < num_dimensions_a && index_b < num_dimensions_b) >> + { >> + gcc_checking_assert (handled_component_p (next_ref_a)); >> + gcc_checking_assert (handled_component_p (next_ref_b)); >> + tree outer_ref_a = TREE_OPERAND (next_ref_a, 0); >> + tree outer_ref_b = TREE_OPERAND (next_ref_b, 0); >> + tree type_a = TREE_TYPE (outer_ref_a); >> + tree type_b = TREE_TYPE (outer_ref_b); >> + if (types_compatible_p (type_a, type_b)) >> + { >> + /* This pair of accesses belong to a suitable sequence. */ >> + if (start_a + num_dimensions != index_a >> + || start_b + num_dimensions != index_b) >> + { >> + /* Start a new sequence here. */ >> + start_a = index_a; >> + start_b = index_b; >> + num_dimensions = 0; >> + } >> + num_dimensions += 1; >> + if (TREE_CODE (type_a) == RECORD_TYPE) >> + { >> + struct_start_a = start_a; >> + struct_start_b = start_b; >> + struct_num_dimensions = num_dimensions; >> + struct_ref_a = outer_ref_a; >> + struct_ref_b = outer_ref_b; >> + } >> + next_ref_a = outer_ref_a; >> + next_ref_b = outer_ref_b; >> + index_a += 1; >> + index_b += 1; >> + continue; >> + } >> + /* Try to approach equal type sizes. */ >> + if (!COMPLETE_TYPE_P (type_a) >> + || !COMPLETE_TYPE_P (type_b) >> + || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_a)) >> + || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_b))) >> + break; >> + unsigned HOST_WIDE_INT size_a = tree_to_uhwi (TYPE_SIZE_UNIT >> (type_a)); >> + unsigned HOST_WIDE_INT size_b = tree_to_uhwi (TYPE_SIZE_UNIT >> (type_b)); >> + if (size_a <= size_b) >> + { >> + index_a += 1; >> + next_ref_a = outer_ref_a; >> + } >> + if (size_b <= size_a) >> + { >> + index_b += 1; >> + next_ref_b = outer_ref_b; >> + } >> } >> >> - /* If the references do not access the same object, we do not know >> - whether they alias or not. We do not care about TBAA or alignment >> - info so we can use OEP_ADDRESS_OF to avoid false negatives. >> - But the accesses have to use compatible types as otherwise the >> - built indices would not match. */ >> - if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), > OEP_ADDRESS_OF) >> - || !types_compatible_p (TREE_TYPE (DR_BASE_OBJECT (a)), >> - TREE_TYPE (DR_BASE_OBJECT (b)))) >> + /* See whether the sequence ends at the base and whether the two bases >> + are equal. We do not care about TBAA or alignment info so we can use >> + OEP_ADDRESS_OF to avoid false negatives. */ >> + tree base_a = DR_BASE_OBJECT (a); >> + tree base_b = DR_BASE_OBJECT (b); >> + bool same_base_p = (start_a + num_dimensions == num_dimensions_a >> + && start_b + num_dimensions == num_dimensions_b >> + && DR_UNCONSTRAINED_BASE (a) == DR_UNCONSTRAINED_BASE (b) >> + && operand_equal_p (base_a, base_b, OEP_ADDRESS_OF) >> + && types_compatible_p (TREE_TYPE (base_a), >> + TREE_TYPE (base_b)) >> + && (!loop_nest.exists () >> + || (object_address_invariant_in_loop_p >> + (loop_nest[0], base_a)))); > Major change is in function initialize_data_dependence_relation in > order to detect partial alias opportunity. The original equality > check on DR_BASE_OBJECT is bypassed now. IMHO better to introduce a > new parameter to compute_data_reference_for_loop etc., indicating > whether we want to handle partial alias opportunity or not. After > all, such computation is unnecessary for predcom/prefetch/parloop. > It's only a waste of time computing it. Well, it also means that we can now prove the accesses are independent in more cases. E.g. previously we would assume the a and b accesses in: struct s { int x[16]; } *a, *b; for (int i = 0; i < 8; ++i) a->x[i] = b->x[i + 8]; could conflict. If callers don't need to know what the relationship between a and b is, I think they should check for that before going through the process of initialising and analysing the ddr. >> + >> + /* If the bases are the same, we can include the base variation too. >> + E.g. the b accesses in: >> + >> + for (int i = 0; i < n; ++i) >> + b[i + 4][0] = b[i][0]; >> + >> + have a definite dependence distance of 4, while for: >> + >> + for (int i = 0; i < n; ++i) >> + a[i + 4][0] = b[i][0]; >> + >> + the dependence distance depends on the gap between a and b. >> + >> + If the bases are different then we can only rely on the sequence >> + rooted at a structure access, since arrays are allowed to overlap >> + arbitrarily and change shape arbitrarily. E.g. we treat this as >> + valid code: >> + >> + int a[256]; >> + ... >> + ((int (*)[4][3])&a[1])[i][0] += ((int (*)[4][3])&a[2])[i][0]; >> + >> + where two lvalues with the same int[4][3] type overlap, and where >> + both lvalues are distinct from the object's declared type. */ >> + if (same_base_p) >> { >> - DDR_ARE_DEPENDENT (res) = chrec_dont_know; >> - return res; >> + if (DR_UNCONSTRAINED_BASE (a)) >> + num_dimensions += 1; >> + } >> + else >> + { >> + start_a = struct_start_a; >> + start_b = struct_start_b; >> + num_dimensions = struct_num_dimensions; >> } >> >> - /* If the base of the object is not invariant in the loop nest, we cannot >> - analyze it. TODO -- in fact, it would suffice to record that there may >> - be arbitrary dependences in the loops where the base object varies. */ >> - if ((loop_nest.exists () >> - && !object_address_invariant_in_loop_p (loop_nest[0], DR_BASE_OBJECT > (a))) >> - || DR_NUM_DIMENSIONS (a) == 0) >> + /* Punt if we didn't find a suitable sequence. */ >> + if (num_dimensions == 0) >> { >> DDR_ARE_DEPENDENT (res) = chrec_dont_know; >> return res; >> } >> >> - /* If the number of dimensions of the access to not agree we can have >> - a pointer access to a component of the array element type and an >> - array access while the base-objects are still the same. Punt. */ >> - if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b)) >> + if (!same_base_p) >> { >> - DDR_ARE_DEPENDENT (res) = chrec_dont_know; >> - return res; >> + /* Partial overlap is possible for different bases when strict >> aliasing >> + is not in effect. It's also possible if either base involves a >> union >> + access; e.g. for: >> + >> + struct s1 { int a[2]; }; >> + struct s2 { struct s1 b; int c; }; >> + struct s3 { int d; struct s1 e; }; >> + union u { struct s2 f; struct s3 g; } *p, *q; >> + >> + the s1 at "p->f.b" (base "p->f") partially overlaps the s1 at >> + "p->g.e" (base "p->g") and might partially overlap the s1 at >> + "q->g.e" (base "q->g"). */ >> + if (!flag_strict_aliasing >> + || ref_contains_union_access_p (struct_ref_a) >> + || ref_contains_union_access_p (struct_ref_b)) >> + { >> + DDR_ARE_DEPENDENT (res) = chrec_dont_know; >> + return res; >> + } >> + >> + DDR_COULD_BE_INDEPENDENT_P (res) = true; >> } >> >> DDR_AFFINE_P (res) = true; >> DDR_ARE_DEPENDENT (res) = NULL_TREE; >> - DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a)); >> + DDR_SUBSCRIPTS (res).create (num_dimensions); >> DDR_LOOP_NEST (res) = loop_nest; >> DDR_INNER_LOOP (res) = 0; >> DDR_SELF_REFERENCE (res) = false; >> >> - for (i = 0; i < DR_NUM_DIMENSIONS (a); i++) >> + for (i = 0; i < num_dimensions; ++i) >> { >> struct subscript *subscript; >> >> subscript = XNEW (struct subscript); >> + SUB_ACCESS_FN (subscript, 0) = DR_ACCESS_FN (a, start_a + i); >> + SUB_ACCESS_FN (subscript, 1) = DR_ACCESS_FN (b, start_b + i); >> SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known (); >> SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known (); >> SUB_LAST_CONFLICT (subscript) = chrec_dont_know; >> @@ -3163,14 +3312,15 @@ add_outer_distances (struct data_depende >> } >> >> /* Return false when fail to represent the data dependence as a >> - distance vector. INIT_B is set to true when a component has been >> + distance vector. A_INDEX is the index of the first reference >> + (0 for DDR_A, 1 for DDR_B) and B_INDEX is the index of the >> + second reference. INIT_B is set to true when a component has been >> added to the distance vector DIST_V. INDEX_CARRY is then set to >> the index in DIST_V that carries the dependence. */ >> >> static bool >> build_classic_dist_vector_1 (struct data_dependence_relation *ddr, >> - struct data_reference *ddr_a, >> - struct data_reference *ddr_b, >> + unsigned int a_index, unsigned int b_index, >> lambda_vector dist_v, bool *init_b, >> int *index_carry) >> { >> @@ -3188,8 +3338,8 @@ build_classic_dist_vector_1 (struct data >> return false; >> } >> >> - access_fn_a = DR_ACCESS_FN (ddr_a, i); >> - access_fn_b = DR_ACCESS_FN (ddr_b, i); >> + access_fn_a = SUB_ACCESS_FN (subscript, a_index); >> + access_fn_b = SUB_ACCESS_FN (subscript, b_index); >> >> if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC >> && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC) >> @@ -3249,10 +3399,11 @@ build_classic_dist_vector_1 (struct data >> constant_access_functions (const struct data_dependence_relation *ddr) >> { >> unsigned i; >> + subscript *sub; >> >> - for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) >> - if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr), i)) >> - || !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr), i))) >> + FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub) >> + if (!evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 0)) >> + || !evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 1))) >> return false; >> >> return true; >> @@ -3315,10 +3466,11 @@ add_other_self_distances (struct data_de >> lambda_vector dist_v; >> unsigned i; >> int index_carry = DDR_NB_LOOPS (ddr); >> + subscript *sub; >> >> - for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) >> + FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub) >> { >> - tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i); >> + tree access_fun = SUB_ACCESS_FN (sub, 0); >> >> if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC) >> { >> @@ -3330,7 +3482,7 @@ add_other_self_distances (struct data_de >> return; >> } >> >> - access_fun = DR_ACCESS_FN (DDR_A (ddr), 0); >> + access_fun = SUB_ACCESS_FN (DDR_SUBSCRIPT (ddr, 0), 0); >> >> if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC) >> add_multivariate_self_dist (ddr, access_fun); >> @@ -3401,6 +3553,23 @@ add_distance_for_zero_overlaps (struct d >> } >> } >> >> +/* Return true when the DDR contains two data references that have the >> + same access functions. */ >> + >> +static inline bool >> +same_access_functions (const struct data_dependence_relation *ddr) >> +{ >> + unsigned i; >> + subscript *sub; >> + >> + FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub) >> + if (!eq_evolutions_p (SUB_ACCESS_FN (sub, 0), >> + SUB_ACCESS_FN (sub, 1))) >> + return false; >> + >> + return true; >> +} >> + >> /* Compute the classic per loop distance vector. DDR is the data >> dependence relation to build a vector from. Return false when fail >> to represent the data dependence as a distance vector. */ >> @@ -3432,8 +3601,7 @@ build_classic_dist_vector (struct data_d >> } >> >> dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); >> - if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr), >> - dist_v, &init_b, &index_carry)) >> + if (!build_classic_dist_vector_1 (ddr, 0, 1, dist_v, &init_b, > &index_carry)) >> return false; >> >> /* Save the distance vector if we initialized one. */ >> @@ -3466,12 +3634,11 @@ build_classic_dist_vector (struct data_d >> if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr))) >> { >> lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); >> - if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr), >> - loop_nest)) >> + if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest)) >> return false; >> compute_subscript_distance (ddr); >> - if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr), >> - save_v, &init_b, &index_carry)) >> + if (!build_classic_dist_vector_1 (ddr, 1, 0, save_v, &init_b, >> + &index_carry)) >> return false; >> save_dist_v (ddr, save_v); >> DDR_REVERSED_P (ddr) = true; >> @@ -3507,12 +3674,10 @@ build_classic_dist_vector (struct data_d >> { >> lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); >> >> - if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), >> - DDR_A (ddr), loop_nest)) >> + if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest)) >> return false; >> compute_subscript_distance (ddr); >> - if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A >> (ddr), >> - opposite_v, &init_b, >> + if (!build_classic_dist_vector_1 (ddr, 1, 0, opposite_v, &init_b, >> &index_carry)) >> return false; >> >> @@ -3591,13 +3756,13 @@ build_classic_dir_vector (struct data_de >> } >> } >> >> -/* Helper function. Returns true when there is a dependence between >> - data references DRA and DRB. */ >> +/* Helper function. Returns true when there is a dependence between the >> + data references. A_INDEX is the index of the first reference (0 for >> + DDR_A, 1 for DDR_B) and B_INDEX is the index of the second reference. */ >> >> static bool >> subscript_dependence_tester_1 (struct data_dependence_relation *ddr, >> - struct data_reference *dra, >> - struct data_reference *drb, >> + unsigned int a_index, unsigned int b_index, >> struct loop *loop_nest) >> { >> unsigned int i; >> @@ -3609,8 +3774,8 @@ subscript_dependence_tester_1 (struct da >> { >> conflict_function *overlaps_a, *overlaps_b; >> >> - analyze_overlapping_iterations (DR_ACCESS_FN (dra, i), >> - DR_ACCESS_FN (drb, i), >> + analyze_overlapping_iterations (SUB_ACCESS_FN (subscript, a_index), >> + SUB_ACCESS_FN (subscript, b_index), >> &overlaps_a, &overlaps_b, >> &last_conflicts, loop_nest); >> >> @@ -3659,7 +3824,7 @@ subscript_dependence_tester_1 (struct da >> subscript_dependence_tester (struct data_dependence_relation *ddr, >> struct loop *loop_nest) >> { >> - if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr), > loop_nest)) >> + if (subscript_dependence_tester_1 (ddr, 0, 1, loop_nest)) >> dependence_stats.num_dependence_dependent++; >> >> compute_subscript_distance (ddr); >> Index: gcc/tree-ssa-loop-prefetch.c >> =================================================================== >> --- gcc/tree-ssa-loop-prefetch.c 2017-03-28 16:19:28.000000000 +0100 >> +++ gcc/tree-ssa-loop-prefetch.c 2017-05-03 08:48:48.737038502 +0100 >> @@ -1650,6 +1650,7 @@ determine_loop_nest_reuse (struct loop * >> refb = (struct mem_ref *) DDR_B (dep)->aux; >> >> if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know >> + || DDR_COULD_BE_INDEPENDENT_P (dep) >> || DDR_NUM_DIST_VECTS (dep) == 0) >> { >> /* If the dependence cannot be analyzed, assume that there might be > As said, we could avoid computing such information in the first place. > I can see predcom ingores it by explicitly checking DR_BASE_OBJECT, > what about tree-parloops.c? For parloops, it should help that we can now prove lack of dependence in more cases. Thanks, Richard