I've committed this patch to the gomp4 branch. It adds support for worker and
gang level complex double reductions.
For smaller reductions, we continue to use the type punning of a
VIEW_CONVERT_EXPR, so we can use the hw-provided compare & swap primitive. For
128 bit types, there is no such instruction. We have to use a different mechanism.
Rather than a completely different mechanism, I chose to synthesize cmp&swap at
the point of the reduction using a global lock. This allows us to hold the
global lock only when we're trying the cmp&swap, rather than over the whole
operation. We have to use a lock variable in global memory, as using one in
.shared memory (for worker reductions), can result in resource starvation. (As
discovered earlier, Nvidia have confirmed a global lock will not result in such
starvation.)
The simplest approach is a single global lock -- we can always go to a hashed
array of locks, if it proves to be a bottleneck, but there are lower hanging
optimizations before that point. I use the cmp&swap itself to obtain and
release the lock, so no new builtins are needed for it. I take advantage of
that to do the unlocking on the failure path, which I place at the start of the
update loop:
bool locked = false;
do {
cmp&swap (&lock_var, locked, false);
write = <reduction calculation>
while (cmp&swap (&lock_var, false, true))
continue;
actual = *obj_ptr;
locked = true;
} while (actual != expected)
*obj_ptr = write;
cmp&swap (&lock_var, true, false);
nathan
2015-11-16 Nathan Sidwell <nat...@codesourcery.com>
gcc/
* config/nvtpx/nvptx.c (global_lock_var): New.
(nvptx_global_lock_addr): New.
(nvptx_lockless_update): Add support for complex.
libgcc/
* config/nvtpx/reduction.c: New.
* config/nvptx/t-nvptx (LIB2ADD): Add it.
libgomp/
* testsuite/libgomp.oacc-c-c++-common/reduction-cplx-dbl.c: Add
worker & gang cases.
* testsuite/libgomp.oacc-c-c++-common/reduction-cplx-flt.c: Likewise.
Index: gcc/config/nvptx/nvptx.c
===================================================================
--- gcc/config/nvptx/nvptx.c (revision 230435)
+++ gcc/config/nvptx/nvptx.c (working copy)
@@ -122,6 +122,9 @@ static unsigned worker_red_align;
#define worker_red_name "__worker_red"
static GTY(()) rtx worker_red_sym;
+/* Global lock variable, needed for 128bit worker & gang reductions. */
+static GTY(()) tree global_lock_var;
+
/* Allocate a new, cleared machine_function structure. */
static struct machine_function *
@@ -4082,7 +4085,6 @@ nvptx_expand_cmp_swap (tree exp, rtx tar
return target;
}
-
/* Codes for all the NVPTX builtins. */
enum nvptx_builtins
{
@@ -4317,8 +4319,46 @@ nvptx_generate_vector_shuffle (location_
gimplify_assign (dest_var, expr, seq);
}
-/* Insert code to locklessly update *PTR with *PTR OP VAR just before
- GSI. */
+/* Lazily generate the global lock var decl and return its addresss. */
+
+static tree
+nvptx_global_lock_addr ()
+{
+ tree v = global_lock_var;
+
+ if (!v)
+ {
+ tree name = get_identifier ("__reduction_lock");
+ tree type = build_qualified_type (unsigned_type_node,
+ TYPE_QUAL_VOLATILE);
+ v = build_decl (BUILTINS_LOCATION, VAR_DECL, name, type);
+ global_lock_var = v;
+ DECL_ARTIFICIAL (v) = 1;
+ DECL_EXTERNAL (v) = 1;
+ TREE_STATIC (v) = 1;
+ TREE_PUBLIC (v) = 1;
+ TREE_USED (v) = 1;
+ mark_addressable (v);
+ mark_decl_referenced (v);
+ }
+
+ return build_fold_addr_expr (v);
+}
+
+/* Insert code to locklessly update *PTR with *PTR OP VAR just before
+ GSI. We use a lockless scheme for nearly all case, which looks
+ like:
+ actual = initval(OP);
+ do {
+ guess = actual;
+ write = guess OP myval;
+ actual = cmp&swap (ptr, guess, write)
+ } while (actual bit-differnt-to guess);
+
+ Unfortunately for types larger than 64 bits, there is no cmp&swap
+ instruction. We use a lock variable in global memory to synthesize
+ the above sequence. (A lock in global memory is necessary to force
+ execution engine descheduling and avoid resource starvation.) */
static tree
nvptx_lockless_update (location_t loc, gimple_stmt_iterator *gsi,
@@ -4326,79 +4366,235 @@ nvptx_lockless_update (location_t loc, g
{
unsigned fn = NVPTX_BUILTIN_CMP_SWAP;
tree_code code = NOP_EXPR;
- tree type = unsigned_type_node;
+ tree arg_type = unsigned_type_node;
+ tree var_type = TREE_TYPE (var);
+ tree dest_type = var_type;
+ tree inner_type = NULL_TREE; /* Non-null if synthesizing cmp&swap. */
- enum machine_mode mode = TYPE_MODE (TREE_TYPE (var));
+ if (TREE_CODE (var_type) == COMPLEX_TYPE)
+ {
+ if (TYPE_SIZE (TREE_TYPE (var_type))
+ == TYPE_SIZE (long_long_unsigned_type_node))
+ /* Must do by parts. */
+ var_type = TREE_TYPE (var_type);
+ else
+ code = VIEW_CONVERT_EXPR;
+ }
- if (!INTEGRAL_MODE_P (mode))
+ if (TREE_CODE (var_type) == REAL_TYPE)
code = VIEW_CONVERT_EXPR;
- if (GET_MODE_SIZE (mode) == GET_MODE_SIZE (DImode))
+
+ if (TYPE_SIZE (var_type) == TYPE_SIZE (long_long_unsigned_type_node))
{
+ arg_type = long_long_unsigned_type_node;
fn = NVPTX_BUILTIN_CMP_SWAPLL;
- type = long_long_unsigned_type_node;
}
+ if (var_type != dest_type)
+ {
+ inner_type = arg_type;
+ arg_type = dest_type;
+ /* We use the cmp&swap insn to do the global locking. */
+ fn = NVPTX_BUILTIN_CMP_SWAP;
+ }
+
+ tree swap_fn = nvptx_builtin_decl (fn, true);
+
+ /* Build and insert the initialization sequence. */
gimple_seq init_seq = NULL;
- tree init_var = make_ssa_name (type);
- tree init_expr = omp_reduction_init_op (loc, op, TREE_TYPE (var));
- init_expr = fold_build1 (code, type, init_expr);
+ tree init_var = make_ssa_name (arg_type);
+ tree init_expr = omp_reduction_init_op (loc, op, dest_type);
+ if (arg_type != dest_type)
+ init_expr = fold_build1 (code, arg_type, init_expr);
gimplify_assign (init_var, init_expr, &init_seq);
gimple *init_end = gimple_seq_last (init_seq);
gsi_insert_seq_before (gsi, init_seq, GSI_SAME_STMT);
-
- gimple_seq loop_seq = NULL;
- tree expect_var = make_ssa_name (type);
- tree actual_var = make_ssa_name (type);
- tree write_var = make_ssa_name (type);
-
- tree write_expr = fold_build1 (code, TREE_TYPE (var), expect_var);
- write_expr = fold_build2 (op, TREE_TYPE (var), write_expr, var);
- write_expr = fold_build1 (code, type, write_expr);
- gimplify_assign (write_var, write_expr, &loop_seq);
-
- tree swap_expr = nvptx_builtin_decl (fn, true);
- swap_expr = build_call_expr_loc (loc, swap_expr, 3,
- ptr, expect_var, write_var);
- gimplify_assign (actual_var, swap_expr, &loop_seq);
-
- gcond *cond = gimple_build_cond (EQ_EXPR, actual_var, expect_var,
- NULL_TREE, NULL_TREE);
- gimple_seq_add_stmt (&loop_seq, cond);
/* Split the block just after the init stmts. */
basic_block pre_bb = gsi_bb (*gsi);
edge pre_edge = split_block (pre_bb, init_end);
- basic_block loop_bb = pre_edge->dest;
+ basic_block head_bb = pre_edge->dest;
pre_bb = pre_edge->src;
/* Reset the iterator. */
*gsi = gsi_for_stmt (gsi_stmt (*gsi));
- /* Insert the loop statements. */
- gimple *loop_end = gimple_seq_last (loop_seq);
- gsi_insert_seq_before (gsi, loop_seq, GSI_SAME_STMT);
+ tree expect_var = make_ssa_name (arg_type);
+ tree actual_var = make_ssa_name (arg_type);
+ tree write_var = make_ssa_name (arg_type);
+ tree lock_state = NULL_TREE;
+ tree uns_unlocked = NULL_TREE, uns_locked = NULL_TREE;
+
+ /* Build and insert the reduction calculation. */
+ gimple_seq red_seq = NULL;
+ if (inner_type)
+ {
+ /* Unlock the lock using cmp&swap with an appropriate expected
+ value. This ends up with us unlocking only on subsequent
+ iterations. */
+ lock_state = make_ssa_name (unsigned_type_node);
+ uns_unlocked = build_int_cst (unsigned_type_node, 0);
+ uns_locked = build_int_cst (unsigned_type_node, 1);
+
+ tree unlock_expr = nvptx_global_lock_addr ();
+ unlock_expr = build_call_expr_loc (loc, swap_fn, 3, unlock_expr,
+ lock_state, uns_unlocked);
+ gimplify_and_add (unlock_expr, &red_seq);
+ }
+
+ tree write_expr = expect_var;
+ if (arg_type != dest_type)
+ write_expr = fold_build1 (code, dest_type, expect_var);
+ write_expr = fold_build2 (op, dest_type, write_expr, var);
+ if (arg_type != dest_type)
+ write_expr = fold_build1 (code, arg_type, write_expr);
+ gimplify_assign (write_var, write_expr, &red_seq);
+
+ gimple *red_end = gimple_seq_last (red_seq);
+ gsi_insert_seq_before (gsi, red_seq, GSI_SAME_STMT);
+
+ basic_block latch_bb = head_bb;
+ basic_block lock_bb = NULL;
+
+ /* Build the cmp&swap sequence. */
+ gcond *cond;
+ tree cond_var, cond_val, swap_expr;
+ gimple_seq latch_seq = NULL;
+ if (inner_type)
+ {
+ /* Here we have to insert another loop, spinning on acquiring
+ the global lock. Lock releasing is sone at the head of the
+ main loop, or in the block following the loop. */
+
+ /* Split the block just after the reduction stmts. */
+ edge lock_edge = split_block (head_bb, red_end);
+ lock_bb = lock_edge->dest;
+ head_bb = lock_edge->src;
+ *gsi = gsi_for_stmt (gsi_stmt (*gsi));
+
+ /* Create & insert the lock sequence. */
+ gimple_seq lock_seq = NULL;
+ tree locked = make_ssa_name (unsigned_type_node);
+ tree lock_expr = nvptx_global_lock_addr ();
+ lock_expr = build_call_expr_loc (loc, swap_fn, 3, lock_expr,
+ uns_unlocked, uns_locked);
+ gimplify_assign (locked, lock_expr, &lock_seq);
+ cond = gimple_build_cond (EQ_EXPR, locked, uns_unlocked,
+ NULL_TREE, NULL_TREE);
+ gimple_seq_add_stmt (&lock_seq, cond);
+
+ gimple *lock_end = gimple_seq_last (lock_seq);
+ gsi_insert_seq_before (gsi, lock_seq, GSI_SAME_STMT);
+
+ /* Split the block just after the lock sequence. */
+ edge locked_edge = split_block (lock_bb, lock_end);
+ latch_bb = locked_edge->dest;
+ lock_bb = locked_edge->src;
+ *gsi = gsi_for_stmt (gsi_stmt (*gsi));
+
+ /* Make lock_bb a loop. */
+ locked_edge->flags ^= EDGE_TRUE_VALUE | EDGE_FALLTHRU;
+ make_edge (lock_bb, lock_bb, EDGE_FALSE_VALUE);
+ set_immediate_dominator (CDI_DOMINATORS, lock_bb, head_bb);
+ set_immediate_dominator (CDI_DOMINATORS, latch_bb, lock_bb);
+
+ /* Read the location. */
+ tree ref = build_simple_mem_ref (ptr);
+ TREE_THIS_VOLATILE (ref) = 1;
+ gimplify_assign (actual_var, ref, &latch_seq);
+
+ /* Determine equality by extracting the real & imaginary parts,
+ punning to an integral type and then using xor & or to create
+ a zero or non-zero value we can use in a comparison. */
+ tree act_real = fold_build1 (REALPART_EXPR, var_type, actual_var);
+ tree act_imag = fold_build1 (IMAGPART_EXPR, var_type, actual_var);
+ tree exp_real = fold_build1 (REALPART_EXPR, var_type, expect_var);
+ tree exp_imag = fold_build1 (IMAGPART_EXPR, var_type, expect_var);
+
+ act_real = fold_build1 (code, inner_type, act_real);
+ act_imag = fold_build1 (code, inner_type, act_imag);
+ exp_real = fold_build1 (code, inner_type, exp_real);
+ exp_imag = fold_build1 (code, inner_type, exp_imag);
+
+ tree cmp_real = fold_build2 (BIT_XOR_EXPR, inner_type,
+ act_real, exp_real);
+ tree cmp_imag = fold_build2 (BIT_XOR_EXPR, inner_type,
+ act_imag, exp_imag);
+ swap_expr = fold_build2 (BIT_IOR_EXPR, inner_type, cmp_real, cmp_imag);
+
+ cond_var = make_ssa_name (inner_type);
+ cond_val = build_int_cst (inner_type, 0);
+ }
+ else
+ {
+ swap_expr = build_call_expr_loc (loc, swap_fn, 3,
+ ptr, expect_var, write_var);
+ cond_var = actual_var;
+ cond_val = expect_var;
+ }
+
+ gimplify_assign (cond_var, swap_expr, &latch_seq);
+ cond = gimple_build_cond (EQ_EXPR, cond_var, cond_val, NULL_TREE, NULL_TREE);
+ gimple_seq_add_stmt (&latch_seq, cond);
+
+ /* Insert the latch statements. */
+ gimple *latch_end = gimple_seq_last (latch_seq);
+ gsi_insert_seq_before (gsi, latch_seq, GSI_SAME_STMT);
- /* Split the block just after the loop stmts. */
- edge post_edge = split_block (loop_bb, loop_end);
+ /* Split the block just after the latch stmts. */
+ edge post_edge = split_block (latch_bb, latch_end);
basic_block post_bb = post_edge->dest;
- loop_bb = post_edge->src;
+ latch_bb = post_edge->src;
*gsi = gsi_for_stmt (gsi_stmt (*gsi));
+ /* Create the loop. */
post_edge->flags ^= EDGE_TRUE_VALUE | EDGE_FALLTHRU;
- edge loop_edge = make_edge (loop_bb, loop_bb, EDGE_FALSE_VALUE);
- set_immediate_dominator (CDI_DOMINATORS, loop_bb, pre_bb);
- set_immediate_dominator (CDI_DOMINATORS, post_bb, loop_bb);
+ edge loop_edge = make_edge (latch_bb, head_bb, EDGE_FALSE_VALUE);
+ set_immediate_dominator (CDI_DOMINATORS, head_bb, pre_bb);
+ set_immediate_dominator (CDI_DOMINATORS, post_bb, latch_bb);
- gphi *phi = create_phi_node (expect_var, loop_bb);
+ gphi *phi = create_phi_node (expect_var, head_bb);
add_phi_arg (phi, init_var, pre_edge, loc);
add_phi_arg (phi, actual_var, loop_edge, loc);
- loop *loop = alloc_loop ();
- loop->header = loop_bb;
- loop->latch = loop_bb;
- add_loop (loop, loop_bb->loop_father);
-
- return fold_build1 (code, TREE_TYPE (var), write_var);
+ loop *update_loop = alloc_loop ();
+ update_loop->header = head_bb;
+ update_loop->latch = latch_bb;
+ update_loop->nb_iterations_estimate = 1;
+ update_loop->any_estimate = true;
+ add_loop (update_loop, head_bb->loop_father);
+
+ if (inner_type)
+ {
+ phi = create_phi_node (lock_state, head_bb);
+ add_phi_arg (phi, uns_unlocked, pre_edge, loc);
+ add_phi_arg (phi, uns_locked, loop_edge, loc);
+
+ /* Insert store and unlock. */
+ gimple_seq post_seq = NULL;
+
+ /* Write the location and release the lock. */
+ tree ref = build_simple_mem_ref (ptr);
+ TREE_THIS_VOLATILE (ref) = 1;
+ gimplify_assign (ref, write_var, &post_seq);
+
+ tree unlock_expr = nvptx_global_lock_addr ();
+ unlock_expr = build_call_expr_loc (loc, swap_fn, 3, unlock_expr,
+ uns_locked, uns_unlocked);
+ gimplify_and_add (unlock_expr, &post_seq);
+
+ gsi_insert_seq_before (gsi, post_seq, GSI_SAME_STMT);
+
+ loop *lock_loop = alloc_loop ();
+ lock_loop->header = lock_loop->latch = lock_bb;
+ lock_loop->nb_iterations_estimate = 1;
+ lock_loop->any_estimate = true;
+ add_loop (lock_loop, update_loop);
+ }
+
+ if (dest_type != arg_type)
+ write_var = fold_build1 (code, dest_type, write_var);
+ return write_var;
}
/* NVPTX implementation of GOACC_REDUCTION_SETUP. */
Index: libgcc/config/nvptx/reduction.c
===================================================================
--- libgcc/config/nvptx/reduction.c (revision 0)
+++ libgcc/config/nvptx/reduction.c (working copy)
@@ -0,0 +1,31 @@
+/* Oversized reductions lock variable
+ Copyright (C) 2015 Free Software Foundation, Inc.
+ Contributed by Mentor Graphics.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
+<http://www.gnu.org/licenses/>. */
+
+
+/* We use a global lock variable for reductions on objects larger than
+ 64 bits. Until and unless proven that lock contention for
+ different reduction is a problem, a single lock will suffice. */
+
+unsigned volatile __reduction_lock = 0;
Index: libgcc/config/nvptx/t-nvptx
===================================================================
--- libgcc/config/nvptx/t-nvptx (revision 230435)
+++ libgcc/config/nvptx/t-nvptx (working copy)
@@ -1,7 +1,8 @@
LIB2ADD=$(srcdir)/config/nvptx/malloc.asm \
$(srcdir)/config/nvptx/free.asm \
$(srcdir)/config/nvptx/realloc.c \
- $(srcdir)/config/nvptx/atomic.c
+ $(srcdir)/config/nvptx/atomic.c \
+ $(srcdir)/config/nvptx/reduction.c
LIB2ADDEH=
LIB2FUNCS_EXCLUDE=__main
Index: libgomp/testsuite/libgomp.oacc-c-c++-common/reduction-cplx-dbl.c
===================================================================
--- libgomp/testsuite/libgomp.oacc-c-c++-common/reduction-cplx-dbl.c (revision 230435)
+++ libgomp/testsuite/libgomp.oacc-c-c++-common/reduction-cplx-dbl.c (working copy)
@@ -14,28 +14,41 @@ int close_enough (double _Complex a, dou
return mag2_diff / mag2_a < (FRAC * FRAC);
}
-int main (void)
-{
#define N 100
- double _Complex ary[N], sum, prod, tsum, tprod;
- int ix;
- sum = tsum = 0;
- prod = tprod = 1;
-
- for (ix = 0; ix < N; ix++)
- {
- double frac = ix * (1.0 / 1024) + 1.0;
-
- ary[ix] = frac + frac * 2.0i - 1.0i;
- sum += ary[ix];
- prod *= ary[ix];
- }
+static int __attribute__ ((noinline))
+vector (double _Complex ary[N], double _Complex sum, double _Complex prod)
+{
+ double _Complex tsum = 0, tprod = 1;
-#pragma acc parallel vector_length(32) copyin(ary) copy (tsum, tprod)
+#pragma acc parallel vector_length(32) copyin(ary[0:N]) copy (tsum, tprod)
{
#pragma acc loop vector reduction(+:tsum) reduction (*:tprod)
- for (ix = 0; ix < N; ix++)
+ for (int ix = 0; ix < N; ix++)
+ {
+ tsum += ary[ix];
+ tprod *= ary[ix];
+ }
+ }
+
+ if (!close_enough (sum, tsum))
+ return 1;
+
+ if (!close_enough (prod, tprod))
+ return 1;
+
+ return 0;
+}
+
+static int __attribute__ ((noinline))
+worker (double _Complex ary[N], double _Complex sum, double _Complex prod)
+{
+ double _Complex tsum = 0, tprod = 1;
+
+#pragma acc parallel num_workers(32) copyin(ary[0:N]) copy (tsum, tprod)
+ {
+#pragma acc loop worker reduction(+:tsum) reduction (*:tprod)
+ for (int ix = 0; ix < N; ix++)
{
tsum += ary[ix];
tprod *= ary[ix];
@@ -49,4 +62,53 @@ int main (void)
return 1;
return 0;
+}
+
+static int __attribute__ ((noinline))
+gang (double _Complex ary[N], double _Complex sum, double _Complex prod)
+{
+ double _Complex tsum = 0, tprod = 1;
+
+#pragma acc parallel num_gangs (32) copyin(ary[0:N]) copy (tsum, tprod)
+ {
+#pragma acc loop gang reduction(+:tsum) reduction (*:tprod)
+ for (int ix = 0; ix < N; ix++)
+ {
+ tsum += ary[ix];
+ tprod *= ary[ix];
+ }
+ }
+
+ if (!close_enough (sum, tsum))
+ return 1;
+
+ if (!close_enough (prod, tprod))
+ return 1;
+
+ return 0;
+}
+
+int main (void)
+{
+ double _Complex ary[N], sum = 0, prod = 1;
+
+ for (int ix = 0; ix < N; ix++)
+ {
+ double frac = ix * (1.0 / 1024) + 1.0;
+
+ ary[ix] = frac + frac * 2.0i - 1.0i;
+ sum += ary[ix];
+ prod *= ary[ix];
+ }
+
+ if (vector (ary, sum, prod))
+ return 1;
+
+ if (worker (ary, sum, prod))
+ return 1;
+
+ if (gang (ary, sum, prod))
+ return 1;
+
+ return 0;
}
Index: libgomp/testsuite/libgomp.oacc-c-c++-common/reduction-cplx-flt.c
===================================================================
--- libgomp/testsuite/libgomp.oacc-c-c++-common/reduction-cplx-flt.c (revision 230435)
+++ libgomp/testsuite/libgomp.oacc-c-c++-common/reduction-cplx-flt.c (working copy)
@@ -14,28 +14,41 @@ int close_enough (float _Complex a, floa
return mag2_diff / mag2_a < (FRAC * FRAC);
}
-int main (void)
-{
#define N 100
- float _Complex ary[N], sum, prod, tsum, tprod;
- int ix;
- sum = tsum = 0;
- prod = tprod = 1;
-
- for (ix = 0; ix < N; ix++)
- {
- float frac = ix * (1.0f / 1024) + 1.0f;
-
- ary[ix] = frac + frac * 2.0i - 1.0i;
- sum += ary[ix];
- prod *= ary[ix];
- }
+static int __attribute__ ((noinline))
+vector (float _Complex ary[N], float _Complex sum, float _Complex prod)
+{
+ float _Complex tsum = 0, tprod = 1;
-#pragma acc parallel vector_length(32) copyin(ary) copy (tsum, tprod)
+#pragma acc parallel vector_length(32) copyin(ary[0:N]) copy (tsum, tprod)
{
#pragma acc loop vector reduction(+:tsum) reduction (*:tprod)
- for (ix = 0; ix < N; ix++)
+ for (int ix = 0; ix < N; ix++)
+ {
+ tsum += ary[ix];
+ tprod *= ary[ix];
+ }
+ }
+
+ if (!close_enough (sum, tsum))
+ return 1;
+
+ if (!close_enough (prod, tprod))
+ return 1;
+
+ return 0;
+}
+
+static int __attribute__ ((noinline))
+worker (float _Complex ary[N], float _Complex sum, float _Complex prod)
+{
+ float _Complex tsum = 0, tprod = 1;
+
+#pragma acc parallel num_workers(32) copyin(ary[0:N]) copy (tsum, tprod)
+ {
+#pragma acc loop worker reduction(+:tsum) reduction (*:tprod)
+ for (int ix = 0; ix < N; ix++)
{
tsum += ary[ix];
tprod *= ary[ix];
@@ -49,4 +62,53 @@ int main (void)
return 1;
return 0;
+}
+
+static int __attribute__ ((noinline))
+gang (float _Complex ary[N], float _Complex sum, float _Complex prod)
+{
+ float _Complex tsum = 0, tprod = 1;
+
+#pragma acc parallel num_gangs (32) copyin(ary[0:N]) copy (tsum, tprod)
+ {
+#pragma acc loop gang reduction(+:tsum) reduction (*:tprod)
+ for (int ix = 0; ix < N; ix++)
+ {
+ tsum += ary[ix];
+ tprod *= ary[ix];
+ }
+ }
+
+ if (!close_enough (sum, tsum))
+ return 1;
+
+ if (!close_enough (prod, tprod))
+ return 1;
+
+ return 0;
+}
+
+int main (void)
+{
+ float _Complex ary[N], sum = 0, prod = 1;
+
+ for (int ix = 0; ix < N; ix++)
+ {
+ float frac = ix * (1.0f / 1024) + 1.0f;
+
+ ary[ix] = frac + frac * 2.0i - 1.0i;
+ sum += ary[ix];
+ prod *= ary[ix];
+ }
+
+ if (vector (ary, sum, prod))
+ return 1;
+
+ if (worker (ary, sum, prod))
+ return 1;
+
+ if (gang (ary, sum, prod))
+ return 1;
+
+ return 0;
}