Hello, This patch removes from tree-vrp the use of TRUTH-bitwise expression codes. Also it merges the handling for boolean compatible and non-boolean typed bitwise-binary expressions. Additional it adds primitive checks for bitwise-not expression on boolean-compatible types. In substitute_and_fold the scan-direction of statements within a BB is controlled now by its do_dce flag. This provides better results in vrp-pass.
ChangeLog gcc 2011-07-15 Kai Tietz <kti...@redhat.com> * tree-ssa-propagate.c (substitute_and_fold): Use do_dce flag to deside, if BB's statements are scanned in last to first, or first to last order. * tree-vrp.c (extract_range_from_binary_expr): Remove TRUTH-binary checks. And unify bitwise-binary cases. (register_edge_assert_for_1): Add handling boolean-compatible typed BIT_IOR_EXPR and BIT_NOT_EXPR. (extract_range_from_unary_expr): Add support for 1-bit integral typed BIT_NOT_EXPR expression. (extract_range_from_assignment): Remove TRUTH-binary checks. Add handling for 1-bit integral typed BIT_NOT_EXPR expression. (build_assert_expr_for): Likewise. (register_edge_assert_for_1): Likewise. (simplify_stmt_using_ranges): Likewise. (ssa_name_get_inner_ssa_name_p): New helper function. (ssa_name_get_cast_to_p): New helper function. (simplify_truth_ops_using_ranges): Handle prefixed cast instruction for result. Remove TRUTH-binary checks. Add handling for 1-bit integral typed BIT_NOT_EXPR expression. and BIT_NOT_EXPR. Add handling for one bit ChangeLog gcc/testsuite 2011-07-15 Kai Tietz <kti...@redhat.com> * gcc.dg/tree-ssa/vrp47.c: Test no longer needs dom dump. Bootstrapped and regression tested for all standard languages (plus Ada & Obj-C++) on x86_64-pc-linux-gnu. Ok for apply? Regards, Kai Index: gcc/gcc/testsuite/gcc.dg/tree-ssa/vrp47.c =================================================================== --- gcc.orig/gcc/testsuite/gcc.dg/tree-ssa/vrp47.c 2011-07-13 12:57:46.869620200 +0200 +++ gcc/gcc/testsuite/gcc.dg/tree-ssa/vrp47.c 2011-07-13 22:29:53.221967000 +0200 @@ -4,7 +4,7 @@ jumps when evaluating an && condition. VRP is not able to optimize this. */ /* { dg-do compile { target { ! "mips*-*-* s390*-*-* avr-*-* mn10300-*-*" } } } */ -/* { dg-options "-O2 -fdump-tree-vrp -fdump-tree-dom" } */ +/* { dg-options "-O2 -fdump-tree-vrp" } */ /* { dg-options "-O2 -fdump-tree-vrp -fdump-tree-dom -march=i586" { target { i?86-*-* && ilp32 } } } */ int h(int x, int y) @@ -36,13 +36,10 @@ int f(int x) 0 or 1. */ /* { dg-final { scan-tree-dump-times "\[xy\]\[^ \]* !=" 0 "vrp1" } } */ -/* This one needs more copy propagation that only happens in dom1. */ -/* { dg-final { scan-tree-dump-times "x\[^ \]* & y" 1 "dom1" } } */ -/* { dg-final { scan-tree-dump-times "x\[^ \]* & y" 1 "vrp1" { xfail *-*-* } } } */ +/* { dg-final { scan-tree-dump-times "x\[^ \]* & y" 1 "vrp1" } } */ /* These two are fully simplified by VRP. */ /* { dg-final { scan-tree-dump-times "x\[^ \]* \[|\] y" 1 "vrp1" } } */ /* { dg-final { scan-tree-dump-times "x\[^ \]* \\^ 1" 1 "vrp1" } } */ /* { dg-final { cleanup-tree-dump "vrp\[0-9\]" } } */ -/* { dg-final { cleanup-tree-dump "dom\[0-9\]" } } */ Index: gcc/gcc/tree-ssa-propagate.c =================================================================== --- gcc.orig/gcc/tree-ssa-propagate.c 2011-07-13 12:57:46.870620200 +0200 +++ gcc/gcc/tree-ssa-propagate.c 2011-07-13 22:29:53.253971100 +0200 @@ -979,6 +979,9 @@ replace_phi_args_in (gimple phi, ssa_pro DO_DCE is true if trivially dead stmts can be removed. + If DO_DCE is true, the statements within a BB are walked from + last to first element. Otherwise we scan from first to last element. + Return TRUE when something changed. */ bool @@ -1059,9 +1062,10 @@ substitute_and_fold (ssa_prop_get_value_ for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i)) replace_phi_args_in (gsi_stmt (i), get_value_fn); - /* Propagate known values into stmts. Do a backward walk to expose - more trivially deletable stmts. */ - for (i = gsi_last_bb (bb); !gsi_end_p (i);) + /* Propagate known values into stmts. Do a backward walk if + do_dce is true. In some case it exposes + more trivially deletable stmts to walk backward. */ + for (i = (do_dce ? gsi_last_bb (bb) : gsi_start_bb (bb)); !gsi_end_p (i);) { bool did_replace; gimple stmt = gsi_stmt (i); @@ -1070,7 +1074,10 @@ substitute_and_fold (ssa_prop_get_value_ gimple_stmt_iterator oldi; oldi = i; - gsi_prev (&i); + if (do_dce) + gsi_prev (&i); + else + gsi_next (&i); /* Ignore ASSERT_EXPRs. They are used by VRP to generate range information for names and they are discarded Index: gcc/gcc/tree-vrp.c =================================================================== --- gcc.orig/gcc/tree-vrp.c 2011-07-13 22:25:14.690598100 +0200 +++ gcc/gcc/tree-vrp.c 2011-07-15 08:53:21.086266100 +0200 @@ -2174,9 +2174,7 @@ extract_range_from_binary_expr (value_ra && code != MIN_EXPR && code != MAX_EXPR && code != BIT_AND_EXPR - && code != BIT_IOR_EXPR - && code != TRUTH_AND_EXPR - && code != TRUTH_OR_EXPR) + && code != BIT_IOR_EXPR) { /* We can still do constant propagation here. */ tree const_op0 = op_with_constant_singleton_value_range (op0); @@ -2231,8 +2229,7 @@ extract_range_from_binary_expr (value_ra divisions. TODO, we may be able to derive anti-ranges in some cases. */ if (code != BIT_AND_EXPR - && code != TRUTH_AND_EXPR - && code != TRUTH_OR_EXPR + && code != BIT_IOR_EXPR && code != TRUNC_DIV_EXPR && code != FLOOR_DIV_EXPR && code != CEIL_DIV_EXPR @@ -2291,6 +2288,8 @@ extract_range_from_binary_expr (value_ra else set_value_range_to_varying (vr); } + else if (code == BIT_IOR_EXPR) + set_value_range_to_varying (vr); else gcc_unreachable (); @@ -2299,55 +2298,7 @@ extract_range_from_binary_expr (value_ra /* For integer ranges, apply the operation to each end of the range and see what we end up with. */ - if (code == TRUTH_AND_EXPR - || code == TRUTH_OR_EXPR) - { - /* If one of the operands is zero, we know that the whole - expression evaluates zero. */ - if (code == TRUTH_AND_EXPR - && ((vr0.type == VR_RANGE - && integer_zerop (vr0.min) - && integer_zerop (vr0.max)) - || (vr1.type == VR_RANGE - && integer_zerop (vr1.min) - && integer_zerop (vr1.max)))) - { - type = VR_RANGE; - min = max = build_int_cst (expr_type, 0); - } - /* If one of the operands is one, we know that the whole - expression evaluates one. */ - else if (code == TRUTH_OR_EXPR - && ((vr0.type == VR_RANGE - && integer_onep (vr0.min) - && integer_onep (vr0.max)) - || (vr1.type == VR_RANGE - && integer_onep (vr1.min) - && integer_onep (vr1.max)))) - { - type = VR_RANGE; - min = max = build_int_cst (expr_type, 1); - } - else if (vr0.type != VR_VARYING - && vr1.type != VR_VARYING - && vr0.type == vr1.type - && !symbolic_range_p (&vr0) - && !overflow_infinity_range_p (&vr0) - && !symbolic_range_p (&vr1) - && !overflow_infinity_range_p (&vr1)) - { - /* Boolean expressions cannot be folded with int_const_binop. */ - min = fold_binary (code, expr_type, vr0.min, vr1.min); - max = fold_binary (code, expr_type, vr0.max, vr1.max); - } - else - { - /* The result of a TRUTH_*_EXPR is always true or false. */ - set_value_range_to_truthvalue (vr, expr_type); - return; - } - } - else if (code == PLUS_EXPR + if (code == PLUS_EXPR || code == MIN_EXPR || code == MAX_EXPR) { @@ -2682,71 +2633,125 @@ extract_range_from_binary_expr (value_ra double_int may_be_nonzero0, may_be_nonzero1; double_int must_be_nonzero0, must_be_nonzero1; - vr0_int_cst_singleton_p = range_int_cst_singleton_p (&vr0); - vr1_int_cst_singleton_p = range_int_cst_singleton_p (&vr1); - int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, - &must_be_nonzero0); - int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, - &must_be_nonzero1); - - type = VR_RANGE; - if (vr0_int_cst_singleton_p && vr1_int_cst_singleton_p) - min = max = int_const_binop (code, vr0.max, vr1.max); - else if (!int_cst_range0 && !int_cst_range1) + /* If one of the operands is zero, we know that the whole + expression evaluates zero. */ + if (code == BIT_AND_EXPR + && ((vr0.type == VR_RANGE + && integer_zerop (vr0.min) + && integer_zerop (vr0.max)) + || (vr1.type == VR_RANGE + && integer_zerop (vr1.min) + && integer_zerop (vr1.max)))) { - set_value_range_to_varying (vr); - return; + type = VR_RANGE; + min = max = build_int_cst (expr_type, 0); } - else if (code == BIT_AND_EXPR) + /* If one of the operands has all bits set to one, we know + that the whole expression evaluates to this one. */ + else if (code == BIT_IOR_EXPR + && (vr0.type == VR_RANGE + && integer_all_onesp (vr0.min) + && integer_all_onesp (vr0.max))) { - min = double_int_to_tree (expr_type, - double_int_and (must_be_nonzero0, - must_be_nonzero1)); - max = double_int_to_tree (expr_type, - double_int_and (may_be_nonzero0, - may_be_nonzero1)); - if (TREE_OVERFLOW (min) || tree_int_cst_sgn (min) < 0) - min = NULL_TREE; - if (TREE_OVERFLOW (max) || tree_int_cst_sgn (max) < 0) - max = NULL_TREE; - if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0) - { - if (min == NULL_TREE) - min = build_int_cst (expr_type, 0); - if (max == NULL_TREE || tree_int_cst_lt (vr0.max, max)) - max = vr0.max; + type = VR_RANGE; + min = max = fold_convert (expr_type, vr0.min); + } + else if (code == BIT_IOR_EXPR + && (vr1.type == VR_RANGE + && integer_all_onesp (vr1.min) + && integer_all_onesp (vr1.max))) + { + type = VR_RANGE; + min = max = fold_convert (expr_type, vr1.min); + } + else if (TYPE_PRECISION (TREE_TYPE (op1)) == 1) + { + if (vr0.type != VR_VARYING + && vr1.type != VR_VARYING + && vr0.type == vr1.type + && !symbolic_range_p (&vr0) + && !overflow_infinity_range_p (&vr0) + && !symbolic_range_p (&vr1) + && !overflow_infinity_range_p (&vr1)) + { + /* Boolean expressions cannot be folded with int_const_binop. */ + min = fold_binary (code, expr_type, vr0.min, vr1.min); + max = fold_binary (code, expr_type, vr0.max, vr1.max); } - if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0) + else { - if (min == NULL_TREE) - min = build_int_cst (expr_type, 0); - if (max == NULL_TREE || tree_int_cst_lt (vr1.max, max)) - max = vr1.max; + set_value_range_to_varying (vr); + return; } } - else if (!int_cst_range0 - || !int_cst_range1 - || tree_int_cst_sgn (vr0.min) < 0 - || tree_int_cst_sgn (vr1.min) < 0) - { - set_value_range_to_varying (vr); - return; - } else - { - min = double_int_to_tree (expr_type, - double_int_ior (must_be_nonzero0, - must_be_nonzero1)); - max = double_int_to_tree (expr_type, - double_int_ior (may_be_nonzero0, - may_be_nonzero1)); - if (TREE_OVERFLOW (min) || tree_int_cst_sgn (min) < 0) - min = vr0.min; + { + vr0_int_cst_singleton_p = range_int_cst_singleton_p (&vr0); + vr1_int_cst_singleton_p = range_int_cst_singleton_p (&vr1); + int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, + &must_be_nonzero0); + int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, + &must_be_nonzero1); + + type = VR_RANGE; + if (vr0_int_cst_singleton_p && vr1_int_cst_singleton_p) + min = max = int_const_binop (code, vr0.max, vr1.max); + else if (!int_cst_range0 && !int_cst_range1) + { + set_value_range_to_varying (vr); + return; + } + else if (code == BIT_AND_EXPR) + { + min = double_int_to_tree (expr_type, + double_int_and (must_be_nonzero0, + must_be_nonzero1)); + max = double_int_to_tree (expr_type, + double_int_and (may_be_nonzero0, + may_be_nonzero1)); + if (TREE_OVERFLOW (min) || tree_int_cst_sgn (min) < 0) + min = NULL_TREE; + if (TREE_OVERFLOW (max) || tree_int_cst_sgn (max) < 0) + max = NULL_TREE; + if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0) + { + if (min == NULL_TREE) + min = build_int_cst (expr_type, 0); + if (max == NULL_TREE || tree_int_cst_lt (vr0.max, max)) + max = vr0.max; + } + if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0) + { + if (min == NULL_TREE) + min = build_int_cst (expr_type, 0); + if (max == NULL_TREE || tree_int_cst_lt (vr1.max, max)) + max = vr1.max; + } + } + else if (!int_cst_range0 + || !int_cst_range1 + || tree_int_cst_sgn (vr0.min) < 0 + || tree_int_cst_sgn (vr1.min) < 0) + { + set_value_range_to_varying (vr); + return; + } else - min = vrp_int_const_binop (MAX_EXPR, min, vr0.min); - if (TREE_OVERFLOW (max) || tree_int_cst_sgn (max) < 0) - max = NULL_TREE; - min = vrp_int_const_binop (MAX_EXPR, min, vr1.min); + { + min = double_int_to_tree (expr_type, + double_int_ior (must_be_nonzero0, + must_be_nonzero1)); + max = double_int_to_tree (expr_type, + double_int_ior (may_be_nonzero0, + may_be_nonzero1)); + if (TREE_OVERFLOW (min) || tree_int_cst_sgn (min) < 0) + min = vr0.min; + else + min = vrp_int_const_binop (MAX_EXPR, min, vr0.min); + if (TREE_OVERFLOW (max) || tree_int_cst_sgn (max) < 0) + max = NULL_TREE; + min = vrp_int_const_binop (MAX_EXPR, min, vr1.min); + } } } else @@ -2809,7 +2814,7 @@ extract_range_from_unary_expr (value_ran cannot easily determine a resulting range. */ if (code == FIX_TRUNC_EXPR || code == FLOAT_EXPR - || code == BIT_NOT_EXPR + || (code == BIT_NOT_EXPR && TYPE_PRECISION (type) != 1) || code == CONJ_EXPR) { /* We can still do constant propagation here. */ @@ -3303,10 +3308,7 @@ extract_range_from_assignment (value_ran extract_range_from_assert (vr, gimple_assign_rhs1 (stmt)); else if (code == SSA_NAME) extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt)); - else if (TREE_CODE_CLASS (code) == tcc_binary - || code == TRUTH_AND_EXPR - || code == TRUTH_OR_EXPR - || code == TRUTH_XOR_EXPR) + else if (TREE_CODE_CLASS (code) == tcc_binary) extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt), gimple_expr_type (stmt), gimple_assign_rhs1 (stmt), @@ -3976,7 +3978,9 @@ build_assert_expr_for (tree cond, tree v tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond); assertion = gimple_build_assign (n, a); } - else if (TREE_CODE (cond) == TRUTH_NOT_EXPR) + else if (TREE_CODE (cond) == TRUTH_NOT_EXPR + || (TREE_CODE (cond) == BIT_NOT_EXPR + && TYPE_PRECISION (TREE_TYPE (cond)) == 1)) { /* Given !V, build the assignment N = false. */ tree op0 = TREE_OPERAND (cond, 0); @@ -4519,11 +4523,9 @@ register_edge_assert_for_1 (tree op, enu invert); } else if ((code == NE_EXPR - && (gimple_assign_rhs_code (op_def) == TRUTH_AND_EXPR - || gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)) + && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR) || (code == EQ_EXPR - && (gimple_assign_rhs_code (op_def) == TRUTH_OR_EXPR - || gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))) + && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)) { /* Recurse on each operand. */ retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), @@ -4531,7 +4533,9 @@ register_edge_assert_for_1 (tree op, enu retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def), code, e, bsi); } - else if (gimple_assign_rhs_code (op_def) == TRUTH_NOT_EXPR) + else if (gimple_assign_rhs_code (op_def) == TRUTH_NOT_EXPR + || (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR + && TYPE_PRECISION (TREE_TYPE (op)) == 1)) { /* Recurse, flipping CODE. */ code = invert_tree_comparison (code, false); @@ -4588,8 +4592,8 @@ register_edge_assert_for (tree name, edg the value zero or one, then we may be able to assert values for SSA_NAMEs which flow into COND. */ - /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining - statement of NAME we can assert both operands of the TRUTH_AND_EXPR + /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining + statement of NAME we can assert both operands of the BIT_AND_EXPR have nonzero value. */ if (((comp_code == EQ_EXPR && integer_onep (val)) || (comp_code == NE_EXPR && integer_zerop (val)))) @@ -4597,8 +4601,7 @@ register_edge_assert_for (tree name, edg gimple def_stmt = SSA_NAME_DEF_STMT (name); if (is_gimple_assign (def_stmt) - && (gimple_assign_rhs_code (def_stmt) == TRUTH_AND_EXPR - || gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)) + && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR) { tree op0 = gimple_assign_rhs1 (def_stmt); tree op1 = gimple_assign_rhs2 (def_stmt); @@ -4607,8 +4610,8 @@ register_edge_assert_for (tree name, edg } } - /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining - statement of NAME we can assert both operands of the TRUTH_OR_EXPR + /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining + statement of NAME we can assert both operands of the BIT_IOR_EXPR have zero value. */ if (((comp_code == EQ_EXPR && integer_zerop (val)) || (comp_code == NE_EXPR && integer_onep (val)))) @@ -4616,11 +4619,12 @@ register_edge_assert_for (tree name, edg gimple def_stmt = SSA_NAME_DEF_STMT (name); if (is_gimple_assign (def_stmt) - && (gimple_assign_rhs_code (def_stmt) == TRUTH_OR_EXPR + && ((gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR + && TYPE_PRECISION (TREE_TYPE (name)) == 1) /* For BIT_IOR_EXPR only if NAME == 0 both operands have necessarily zero value. */ || (comp_code == EQ_EXPR - && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)))) + && gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR))) { tree op0 = gimple_assign_rhs1 (def_stmt); tree op1 = gimple_assign_rhs2 (def_stmt); @@ -6747,19 +6751,95 @@ varying: return SSA_PROP_VARYING; } +/* Returns operand1 of ssa-name with SSA_NAME as code, Otherwise it + returns NULL_TREE. */ +static tree +ssa_name_get_inner_ssa_name_p (tree op) +{ + gimple stmt; + + if (TREE_CODE (op) != SSA_NAME + || !is_gimple_assign (SSA_NAME_DEF_STMT (op))) + return NULL_TREE; + stmt = SSA_NAME_DEF_STMT (op); + if (gimple_assign_rhs_code (stmt) != SSA_NAME) + return NULL_TREE; + return gimple_assign_rhs1 (stmt); +} + +/* Returns operand of cast operation, if OP is a type-conversion. Otherwise + return NULL_TREE. */ +static tree +ssa_name_get_cast_to_p (tree op) +{ + gimple stmt; + + if (TREE_CODE (op) != SSA_NAME + || !is_gimple_assign (SSA_NAME_DEF_STMT (op))) + return NULL_TREE; + stmt = SSA_NAME_DEF_STMT (op); + if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt))) + return NULL_TREE; + return gimple_assign_rhs1 (stmt); +} + /* Simplify boolean operations if the source is known to be already a boolean. */ static bool simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt) { enum tree_code rhs_code = gimple_assign_rhs_code (stmt); + gimple stmt2 = stmt; tree val = NULL; - tree op0, op1; + tree op0, op1, cop0, cop1; value_range_t *vr; bool sop = false; bool need_conversion; + location_t loc = gimple_location (stmt); op0 = gimple_assign_rhs1 (stmt); + op1 = NULL_TREE; + + /* Handle cases with prefixed type-cast. */ + if (CONVERT_EXPR_CODE_P (rhs_code) + && INTEGRAL_TYPE_P (TREE_TYPE (op0)) + && TREE_CODE (op0) == SSA_NAME + && is_gimple_assign (SSA_NAME_DEF_STMT (op0)) + && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))) + { + stmt2 = SSA_NAME_DEF_STMT (op0); + op0 = gimple_assign_rhs1 (stmt2); + if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))) + return false; + rhs_code = gimple_assign_rhs_code (stmt2); + if (rhs_code != BIT_NOT_EXPR + && rhs_code != TRUTH_NOT_EXPR + && rhs_code != BIT_AND_EXPR + && rhs_code != BIT_IOR_EXPR + && rhs_code != BIT_XOR_EXPR + && rhs_code != NE_EXPR && rhs_code != EQ_EXPR) + return false; + if (rhs_code == BIT_AND_EXPR || rhs_code == BIT_IOR_EXPR + || rhs_code == BIT_XOR_EXPR + || rhs_code == NE_EXPR || rhs_code == EQ_EXPR) + op1 = gimple_assign_rhs2 (stmt2); + if (gimple_has_location (stmt2)) + loc = gimple_location (stmt2); + } + else if (CONVERT_EXPR_CODE_P (rhs_code)) + return false; + else if (rhs_code == BIT_AND_EXPR || rhs_code == BIT_IOR_EXPR + || rhs_code == BIT_XOR_EXPR + || rhs_code == NE_EXPR || rhs_code == EQ_EXPR) + op1 = gimple_assign_rhs2 (stmt); + + /* ~X is only equivalent of !X, if type-precision is one and X has + an integral type. */ + if (rhs_code == BIT_NOT_EXPR + && (!INTEGRAL_TYPE_P (TREE_TYPE (op0)) + || TYPE_PRECISION (TREE_TYPE (op0)) != 1)) + return false; + if (TYPE_PRECISION (TREE_TYPE (op0)) != 1) { if (TREE_CODE (op0) != SSA_NAME) @@ -6775,22 +6855,100 @@ simplify_truth_ops_using_ranges (gimple_ return false; } - if (rhs_code == TRUTH_NOT_EXPR) + if (op1 && TREE_CODE (op1) != INTEGER_CST + && TYPE_PRECISION (TREE_TYPE (op1)) != 1) + { + vr = get_value_range (op1); + val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop); + if (!val || !integer_onep (val)) + return false; + + val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop); + if (!val || !integer_onep (val)) + return false; + } + + need_conversion = + !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)), + TREE_TYPE (op0)); + + /* As comparisons X != 0 getting folded by prior pass to (bool) X, + but X == 0 might be not folded for none boolean type of X + to (bool) (X ^ 1). + So for bitwise-binary operations we have three cases to handle: + a) ((bool) X) op ((bool) Y) + b) ((bool) X) op (Y == 0) OR (X == 0) op ((bool) Y) + c) (X == 0) op (Y == 0) + The later two cases can't be handled for now, as vr tables + would need to be adjusted. */ + if (need_conversion + && (rhs_code == BIT_XOR_EXPR + || rhs_code == BIT_AND_EXPR + || rhs_code == BIT_IOR_EXPR) + && TREE_CODE (op1) == SSA_NAME && TREE_CODE (op0) == SSA_NAME) + { + cop0 = ssa_name_get_cast_to_p (op0); + cop1 = ssa_name_get_cast_to_p (op1); + if (!cop0 || !cop1) + /* We would need an new statment for cases b and c, and we can't + due vr table, so bail out. */ + return false; + + if (!INTEGRAL_TYPE_P (TREE_TYPE (cop0)) + || !types_compatible_p (TREE_TYPE (cop0), TREE_TYPE (cop1))) + return false; + need_conversion = + !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)), + TREE_TYPE (cop0)); + if (need_conversion) + return false; + op0 = cop0; + op1 = cop1; + + /* We need to re-check if value ranges for new operands + for 1-bit precision/range. */ + if (TYPE_PRECISION (TREE_TYPE (op0)) != 1) + { + if (TREE_CODE (op0) != SSA_NAME) + return false; + vr = get_value_range (op0); + + val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop); + if (!val || !integer_onep (val)) + return false; + + val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop); + if (!val || !integer_onep (val)) + return false; + } + + if (op1 && TYPE_PRECISION (TREE_TYPE (op1)) != 1) + { + vr = get_value_range (op1); + val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop); + if (!val || !integer_onep (val)) + return false; + + val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop); + if (!val || !integer_onep (val)) + return false; + } + } + else if (rhs_code == TRUTH_NOT_EXPR + || rhs_code == BIT_NOT_EXPR) { rhs_code = NE_EXPR; op1 = build_int_cst (TREE_TYPE (op0), 1); } else { - op1 = gimple_assign_rhs2 (stmt); - /* Reduce number of cases to handle. */ if (is_gimple_min_invariant (op1)) { /* Exclude anything that should have been already folded. */ if (rhs_code != EQ_EXPR && rhs_code != NE_EXPR - && rhs_code != TRUTH_XOR_EXPR) + && rhs_code != BIT_XOR_EXPR) return false; if (!integer_zerop (op1) @@ -6810,18 +6968,6 @@ simplify_truth_ops_using_ranges (gimple_ /* Punt on A == B as there is no BIT_XNOR_EXPR. */ if (rhs_code == EQ_EXPR) return false; - - if (TYPE_PRECISION (TREE_TYPE (op1)) != 1) - { - vr = get_value_range (op1); - val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop); - if (!val || !integer_onep (val)) - return false; - - val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop); - if (!val || !integer_onep (val)) - return false; - } } } @@ -6834,11 +6980,8 @@ simplify_truth_ops_using_ranges (gimple_ else location = gimple_location (stmt); - if (rhs_code == TRUTH_AND_EXPR || rhs_code == TRUTH_OR_EXPR) - warning_at (location, OPT_Wstrict_overflow, - _("assuming signed overflow does not occur when " - "simplifying && or || to & or |")); - else + if (rhs_code != BIT_AND_EXPR && rhs_code != BIT_IOR_EXPR + && rhs_code != BIT_XOR_EXPR) warning_at (location, OPT_Wstrict_overflow, _("assuming signed overflow does not occur when " "simplifying ==, != or ! to identity or ^")); @@ -6856,19 +6999,17 @@ simplify_truth_ops_using_ranges (gimple_ switch (rhs_code) { - case TRUTH_AND_EXPR: - rhs_code = BIT_AND_EXPR; - break; - case TRUTH_OR_EXPR: - rhs_code = BIT_IOR_EXPR; + case BIT_AND_EXPR: + case BIT_IOR_EXPR: break; - case TRUTH_XOR_EXPR: + case BIT_XOR_EXPR: case NE_EXPR: if (integer_zerop (op1)) { gimple_assign_set_rhs_with_ops (gsi, need_conversion ? NOP_EXPR : SSA_NAME, op0, NULL); + gimple_set_location (stmt, loc); update_stmt (gsi_stmt (*gsi)); return true; } @@ -6879,10 +7020,20 @@ simplify_truth_ops_using_ranges (gimple_ gcc_unreachable (); } + /* We can't insert here new expression as otherwise + tracked vr tables getting out of bounds. */ if (need_conversion) return false; + /* Reduce here SSA_NAME -> SSA_NAME. */ + while ((cop0 = ssa_name_get_inner_ssa_name_p (op0)) != NULL_TREE) + op0 = cop0; + + while ((cop1 = ssa_name_get_inner_ssa_name_p (op1)) != NULL_TREE) + op1 = cop1; + gimple_assign_set_rhs_with_ops (gsi, rhs_code, op0, op1); + gimple_set_location (stmt, loc); update_stmt (gsi_stmt (*gsi)); return true; } @@ -7417,10 +7568,8 @@ simplify_stmt_using_ranges (gimple_stmt_ { case EQ_EXPR: case NE_EXPR: + case BIT_NOT_EXPR: case TRUTH_NOT_EXPR: - case TRUTH_AND_EXPR: - case TRUTH_OR_EXPR: - case TRUTH_XOR_EXPR: /* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR or identity if the RHS is zero or one, and the LHS are known to be boolean values. Transform all TRUTH_*_EXPR into @@ -7452,13 +7601,21 @@ simplify_stmt_using_ranges (gimple_stmt_ if all the bits being cleared are already cleared or all the bits being set are already set. */ if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) - return simplify_bit_ops_using_ranges (gsi, stmt); + { + if (simplify_truth_ops_using_ranges (gsi, stmt)) + return true; + return simplify_bit_ops_using_ranges (gsi, stmt); + } break; CASE_CONVERT: if (TREE_CODE (rhs1) == SSA_NAME && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) - return simplify_conversion_using_ranges (stmt); + { + if (simplify_truth_ops_using_ranges (gsi, stmt)) + return true; + return simplify_conversion_using_ranges (stmt); + } break; default: