https://gcc.gnu.org/g:3918bea620e826b0df68a9c8492b791a67f294b5

commit r15-1959-g3918bea620e826b0df68a9c8492b791a67f294b5
Author: Pan Li <pan2...@intel.com>
Date:   Sun Jun 30 10:55:50 2024 +0800

    Vect: Optimize truncation for .SAT_SUB operands
    
    To get better vectorized code of .SAT_SUB,  we would like to avoid the
    truncated operation for the assignment.  For example, as below.
    
    unsigned int _1;
    unsigned int _2;
    unsigned short int _4;
    _9 = (unsigned short int).SAT_SUB (_1, _2);
    
    If we make sure that the _1 is in the range of unsigned short int.  Such
    as a def similar to:
    
    _1 = (unsigned short int)_4;
    
    Then we can do the distribute the truncation operation to:
    
    _3 = (unsigned short int) MIN (65535, _2); // aka _3 = .SAT_TRUNC (_2);
    _9 = .SAT_SUB (_4, _3);
    
    Then,  we can better vectorized code and avoid the unnecessary narrowing
    stmt during vectorization with below stmt(s).
    
    _3 = .SAT_TRUNC(_2); // SI => HI
    _9 = .SAT_SUB (_4, _3);
    
    Let's take RISC-V vector as example to tell the changes.  For below
    sample code:
    
    __attribute__((noinline))
    void test (uint16_t *x, unsigned b, unsigned n)
    {
      unsigned a = 0;
      uint16_t *p = x;
    
      do {
        a = *--p;
        *p = (uint16_t)(a >= b ? a - b : 0);
      } while (--n);
    }
    
    Before this patch:
      ...
      .L3:
      vle16.v       v1,0(a3)
      vrsub.vx      v5,v2,t1
      mv    t3,a4
      addw  a4,a4,t5
      vrgather.vv   v3,v1,v5
      vsetvli       zero,zero,e32,m1,ta,ma
      vzext.vf2     v1,v3
      vssubu.vx     v1,v1,a1
      vsetvli       zero,zero,e16,mf2,ta,ma
      vncvt.x.x.w   v1,v1
      vrgather.vv   v3,v1,v5
      vse16.v       v3,0(a3)
      sub   a3,a3,t4
      bgtu  t6,a4,.L3
      ...
    
    After this patch:
    test:
      ...
      .L3:
      vle16.v     v3,0(a3)
      vrsub.vx    v5,v2,a6
      mv          a7,a4
      addw        a4,a4,t3
      vrgather.vv v1,v3,v5
      vssubu.vv   v1,v1,v6
      vrgather.vv v3,v1,v5
      vse16.v     v3,0(a3)
      sub     a3,a3,t1
      bgtu    t4,a4,.L3
      ...
    
    The below test suites are passed for this patch:
    1. The rv64gcv fully regression tests.
    2. The rv64gcv build with glibc.
    3. The x86 bootstrap tests.
    4. The x86 fully regression tests.
    
    gcc/ChangeLog:
    
            * tree-vect-patterns.cc (vect_recog_sat_sub_pattern_transform):
            Add new func impl to perform the truncation distribution.
            (vect_recog_sat_sub_pattern): Perform above optimize before
            generate .SAT_SUB call.
    
    Signed-off-by: Pan Li <pan2...@intel.com>

Diff:
---
 gcc/tree-vect-patterns.cc | 65 +++++++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 65 insertions(+)

diff --git a/gcc/tree-vect-patterns.cc b/gcc/tree-vect-patterns.cc
index 86e893a1c433..4570c25b6647 100644
--- a/gcc/tree-vect-patterns.cc
+++ b/gcc/tree-vect-patterns.cc
@@ -4566,6 +4566,70 @@ vect_recog_sat_add_pattern (vec_info *vinfo, 
stmt_vec_info stmt_vinfo,
   return NULL;
 }
 
+/*
+ * Try to transform the truncation for .SAT_SUB pattern,  mostly occurs in
+ * the benchmark zip.  Aka:
+ *
+ *   unsigned int _1;
+ *   unsigned int _2;
+ *   unsigned short int _4;
+ *   _9 = (unsigned short int).SAT_SUB (_1, _2);
+ *
+ *   if _1 is known to be in the range of unsigned short int.  For example
+ *   there is a def _1 = (unsigned short int)_4.  Then we can transform the
+ *   truncation to:
+ *
+ *   _3 = (unsigned short int) MIN (65535, _2); // aka _3 = .SAT_TRUNC (_2);
+ *   _9 = .SAT_SUB (_4, _3);
+ *
+ *   Then,  we can better vectorized code and avoid the unnecessary narrowing
+ *   stmt during vectorization with below stmt(s).
+ *
+ *   _3 = .SAT_TRUNC(_2); // SI => HI
+ *   _9 = .SAT_SUB (_4, _3);
+ */
+static void
+vect_recog_sat_sub_pattern_transform (vec_info *vinfo,
+                                     stmt_vec_info stmt_vinfo,
+                                     tree lhs, tree *ops)
+{
+  tree otype = TREE_TYPE (lhs);
+  tree itype = TREE_TYPE (ops[0]);
+  unsigned itype_prec = TYPE_PRECISION (itype);
+  unsigned otype_prec = TYPE_PRECISION (otype);
+
+  if (types_compatible_p (otype, itype) || otype_prec >= itype_prec)
+    return;
+
+  tree v_otype = get_vectype_for_scalar_type (vinfo, otype);
+  tree v_itype = get_vectype_for_scalar_type (vinfo, itype);
+  tree_pair v_pair = tree_pair (v_otype, v_itype);
+
+  if (v_otype == NULL_TREE || v_itype == NULL_TREE
+    || !direct_internal_fn_supported_p (IFN_SAT_TRUNC, v_pair,
+                                       OPTIMIZE_FOR_BOTH))
+    return;
+
+  /* 1. Find the _4 and update ops[0] as above example.  */
+  vect_unpromoted_value unprom;
+  tree tmp = vect_look_through_possible_promotion (vinfo, ops[0], &unprom);
+
+  if (tmp == NULL_TREE || TYPE_PRECISION (unprom.type) != otype_prec)
+    return;
+
+  ops[0] = tmp;
+
+  /* 2. Generate _3 = .SAT_TRUNC (_2) and update ops[1] as above example.  */
+  tree trunc_lhs_ssa = vect_recog_temp_ssa_var (otype, NULL);
+  gcall *call = gimple_build_call_internal (IFN_SAT_TRUNC, 1, ops[1]);
+
+  gimple_call_set_lhs (call, trunc_lhs_ssa);
+  gimple_call_set_nothrow (call, /* nothrow_p */ false);
+  append_pattern_def_seq (vinfo, stmt_vinfo, call, v_otype);
+
+  ops[1] = trunc_lhs_ssa;
+}
+
 /*
  * Try to detect saturation sub pattern (SAT_ADD), aka below gimple:
  *   _7 = _1 >= _2;
@@ -4591,6 +4655,7 @@ vect_recog_sat_sub_pattern (vec_info *vinfo, 
stmt_vec_info stmt_vinfo,
 
   if (gimple_unsigned_integer_sat_sub (lhs, ops, NULL))
     {
+      vect_recog_sat_sub_pattern_transform (vinfo, stmt_vinfo, lhs, ops);
       gimple *stmt = vect_recog_build_binary_gimple_stmt (vinfo, stmt_vinfo,
                                                          IFN_SAT_SUB, type_out,
                                                          lhs, ops[0], ops[1]);

Reply via email to