https://gcc.gnu.org/bugzilla/show_bug.cgi?id=89120

--- Comment #2 from Antony Polukhin <antoshkka at gmail dot com> ---
Long story short: I've found no way to improve the standard library code to
always work faster. I'm in favor of closing this ticket as invalid/wont fix.

Long story:

I've tried to add a specialization of minmax_element algorithm for std::less
comparators and arithmetic types. That specialization was doing more
comparisons but in a more predictable way. On big datasets the performance
increased, but decreased on small datasets.


Then I've tried another approach. If the comparison of __first with __next is
barely predictable, then just avoid branching on it.

Portable solution:

bool __b = __comp(__next, __first);       
_ForwardIterator __pots[3] = {__first, __next, __first};
_ForwardIterator __pot_min = *(__pots + __b);
_ForwardIterator __pot_max = *(__pots + __b + 1);

Special case for random access iterators:

bool __b = __comp(__next, __first);
_ForwardIterator __pot_min = __first, __pot_max = __next;
__pot_min += b;
__pot_max -= b;


Unfortunately both those approaches add some overhead for small datasets.
Another disadvantage, is that those approaches produce orthogonal results on
different compilers:  

GCC-9 performance gets better on big datasets
-----------------------------------------------------------------
Benchmark                          Time           CPU Iterations
-----------------------------------------------------------------
naive_minmax/2                     3 ns          3 ns  247522237
naive_minmax/8                     7 ns          7 ns  103044422
naive_minmax/262144          1715635 ns    1710406 ns        407
naive_minmax/1048576         6970755 ns    6947034 ns        101

branchless_minmax/2                8 ns          8 ns   81324904
branchless_minmax/8               30 ns         30 ns   23494608
branchless_minmax/262144      457287 ns     456412 ns       1529
branchless_minmax/1048576    4267914 ns    4219969 ns        363



Clang-9 performance degrades on big datasets
-----------------------------------------------------------------
Benchmark                          Time           CPU Iterations
-----------------------------------------------------------------
naive_minmax/2                     2 ns          2 ns  380928404
naive_minmax/8                     7 ns          7 ns   92642970
naive_minmax/262144           262921 ns     262288 ns       2630
naive_minmax/1048576         1149407 ns    1147626 ns        618

branchless_minmax/2                2 ns          2 ns  307146020
branchless_minmax/8               10 ns         10 ns   74417142
branchless_minmax/262144      425880 ns     425241 ns       1637
branchless_minmax/1048576    1747785 ns    1745725 ns        397


Final attempt. Different compilers optimize the algorithm differently. Clang
shows good performance on big datasets with >4k elements, GCC - on medium sized
datasets with 128-1k elements. Maybe providing more info on probabilities could
help both compilers to produce better code. But looks like heuristics already
deduce the probabilities to be close to 0.5,
__builtin_expect_with_probability(__b, true, 0.5) changed nothing in the
assembly https://godbolt.org/z/PqWoaKfhW

Reply via email to