https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98856

--- Comment #5 from Richard Biener <rguenth at gcc dot gnu.org> ---
Looks like STLF issues.  There's a ls_stlf counter, with SLP vectorization
disabled I see

  34.39%          1417  botan    libbotan-2.so.17  [.]
Botan::Block_Cipher_Fixed_Params<16ul, 16ul, 0ul, 1ul, Botan::BlockCip
  32.27%          1333  botan    libbotan-2.so.17  [.]
Botan::Block_Cipher_Fixed_Params<16ul, 16ul, 0ul, 1ul, Botan::BlockCip
   7.31%           306  botan    libbotan-2.so.17  [.] Botan::poly_double_n_le

while with SLP vectorization enabled there's

Samples: 4K of event 'ls_stlf:u', Event count (approx.): 723886942              
Overhead       Samples  Command  Shared Object     Symbol        
  32.41%          1320  botan    libbotan-2.so.17  [.] Botan::poly_double_n_le
  27.23%          1114  botan    libbotan-2.so.17  [.]
Botan::Block_Cipher_Fixed_Params<16ul, 16ul, 0ul, 1ul, Botan::BlockCip
  27.06%          1107  botan    libbotan-2.so.17  [.]
Botan::Block_Cipher_Fixed_Params<16ul, 16ul, 0ul, 1ul, Botan::BlockCip

but then the register docs suggest that the unnamed cpu/event=0x24,umask=0x2/u
is supposed to be the forwarding fails due to incomplete/misaligned data. 
Unvectorized:

Samples: 4K of event 'cpu/event=0x24,umask=0x2/u', Event count (approx.):
1024347253                                         
Overhead       Samples  Command  Shared Object     Symbol                       
  33.56%          1382  botan    libbotan-2.so.17  [.]
Botan::Block_Cipher_Fixed_Params<16ul, 16ul, 0ul, 1ul, Botan::BlockCip
  30.32%          1246  botan    libbotan-2.so.17  [.]
Botan::Block_Cipher_Fixed_Params<16ul, 16ul, 0ul, 1ul, Botan::BlockCip
  23.18%           953  botan    libbotan-2.so.17  [.] Botan::poly_double_n_le

vectorized:

Samples: 4K of event 'cpu/event=0x24,umask=0x2/u', Event count (approx.):
489384781                                          
Overhead       Samples  Command  Shared Object     Symbol                       
  30.17%          1229  botan    libbotan-2.so.17  [.] Botan::poly_double_n_le
  29.40%          1203  botan    libbotan-2.so.17  [.]
Botan::Block_Cipher_Fixed_Params<16ul, 16ul, 0ul, 1ul, Botan::BlockCip
  28.09%          1147  botan    libbotan-2.so.17  [.]
Botan::Block_Cipher_Fixed_Params<16ul, 16ul, 0ul, 1ul, Botan::BlockCip

but the masking doesn't work as expected since I get hits for either bit
on

  4.05 |       vmovdqa    %xmm4,0x10(%rsp)                                     
                                            #
       |     const uint64_t carry = POLY * (W[LIMBS-1] >> 63);                 
                                            #
 12.24 |       mov        0x18(%rsp),%rdx                                      
                                            #
       |     W[0] = (W[0] << 1) ^ carry;                                       
                                            #
 24.00 |       vmovdqa    0x10(%rsp),%xmm5

which should only happen for bit 2 (data not ready).  Of course this
code-gen is weird since 0x10(%rsp) is available in %xmm4.

Well, changing the above doesn't make a difference.  I guess the event hit
is just quite delayed - that makes perf quite useless here.

As a general optimization remark we fail to scalarize 'W' in poly_double_le
for the larger sizes, but the relevant differences likely appear for the
cases we expand the memcpy inline on GIMPLE, specifically

  <bb 10> [local count: 1431655747]:
  _60 = MEM <__int128 unsigned> [(char * {ref-all})in_6(D)];
  _61 = BIT_FIELD_REF <_60, 64, 64>;
  _62 = _61 >> 63;
  carry_63 = _62 * 135;
  _308 = _61 << 1;
  _228 = (long unsigned int) _60;
  _310 = _228 >> 63;
  _311 = _308 ^ _310;
  _71 = _228 << 1;
  _72 = carry_63 ^ _71;
  MEM <long unsigned int> [(char * {ref-all})out_5(D)] = _72;
  MEM <long unsigned int> [(char * {ref-all})out_5(D) + 8B] = _311;

this is turned into

  <bb 10> [local count: 1431655747]:
  _60 = MEM <__int128 unsigned> [(char * {ref-all})in_6(D)];
  _114 = VIEW_CONVERT_EXPR<vector(2) long unsigned int>(_60);
  vect__71.335_298 = _114 << 1;
  _61 = BIT_FIELD_REF <_60, 64, 64>;
  _62 = _61 >> 63;
  carry_63 = _62 * 135;
  _228 = (long unsigned int) _60;
  _310 = _228 >> 63;
  _147 = {carry_63, _310};
  vect__72.336_173 = _147 ^ vect__71.335_298;
  MEM <vector(2) long unsigned int> [(char * {ref-all})out_5(D)] =
vect__72.336_173;

after the patch which is

build/include/botan/mem_ops.h:148:15: note: Basic block will be vectorized
using SLP
build/include/botan/mem_ops.h:148:15: note: Vectorizing SLP tree:
build/include/botan/mem_ops.h:148:15: note: node 0x275d8e8 (max_nunits=2,
refcnt=1)
build/include/botan/mem_ops.h:148:15: note: op template: MEM <long unsigned
int> [(char * {ref-all})out_5(D)] = _72;
build/include/botan/mem_ops.h:148:15: note:     stmt 0 MEM <long unsigned int>
[(char * {ref-all})out_5(D)] = _72;
build/include/botan/mem_ops.h:148:15: note:     stmt 1 MEM <long unsigned int>
[(char * {ref-all})out_5(D) + 8B] = _311;
build/include/botan/mem_ops.h:148:15: note:     children 0x275d960
build/include/botan/mem_ops.h:148:15: note: node 0x275d960 (max_nunits=2,
refcnt=1)
build/include/botan/mem_ops.h:148:15: note: op template: _72 = carry_63 ^ _71;
build/include/botan/mem_ops.h:148:15: note:     stmt 0 _72 = carry_63 ^ _71;
build/include/botan/mem_ops.h:148:15: note:     stmt 1 _311 = _308 ^ _310;
build/include/botan/mem_ops.h:148:15: note:     children 0x275d9d8 0x275da50
build/include/botan/mem_ops.h:148:15: note: node (external) 0x275d9d8
(max_nunits=1, refcnt=1)
build/include/botan/mem_ops.h:148:15: note:     { carry_63, _310 }
build/include/botan/mem_ops.h:148:15: note: node 0x275da50 (max_nunits=2,
refcnt=1)
build/include/botan/mem_ops.h:148:15: note: op template: _71 = _228 << 1;
build/include/botan/mem_ops.h:148:15: note:     stmt 0 _71 = _228 << 1;
build/include/botan/mem_ops.h:148:15: note:     stmt 1 _308 = _61 << 1;
build/include/botan/mem_ops.h:148:15: note:     children 0x275dac8 0x275dbb8
build/include/botan/mem_ops.h:148:15: note: node 0x275dac8 (max_nunits=1,
refcnt=1)
build/include/botan/mem_ops.h:148:15: note: op: VEC_PERM_EXPR
build/include/botan/mem_ops.h:148:15: note:     stmt 0 _228 = BIT_FIELD_REF
<_60, 64, 0>;
build/include/botan/mem_ops.h:148:15: note:     stmt 1 _61 = BIT_FIELD_REF
<_60, 64, 64>;
build/include/botan/mem_ops.h:148:15: note:     lane permutation { 0[0] 0[1] }
build/include/botan/mem_ops.h:148:15: note:     children 0x275db40
build/include/botan/mem_ops.h:148:15: note: node (external) 0x275db40
(max_nunits=1, refcnt=1)
build/include/botan/mem_ops.h:148:15: note:     { }
build/include/botan/mem_ops.h:148:15: note: node (constant) 0x275dbb8
(max_nunits=1, refcnt=1)
build/include/botan/mem_ops.h:148:15: note:     { 1, 1 }

with costs

build/include/botan/mem_ops.h:148:15: note: Cost model analysis:
  Vector inside of basic block cost: 24
  Vector prologue cost: 8
  Vector epilogue cost: 8
  Scalar cost of basic block: 52

the vectorization isn't too bad I think, it turns into

.L56:
        .cfi_restore_state
        vmovdqu (%rsi), %xmm4
        vmovdqa %xmm4, 16(%rsp)
        movq    24(%rsp), %rdx
        vmovdqa 16(%rsp), %xmm5
        shrq    $63, %rdx
        imulq   $135, %rdx, %rdi
        movq    16(%rsp), %rdx
        vmovq   %rdi, %xmm0
        vpsllq  $1, %xmm5, %xmm1
        shrq    $63, %rdx
        vpinsrq $1, %rdx, %xmm0, %xmm0
        vpxor   %xmm1, %xmm0, %xmm0
        vmovdqu %xmm0, (%rax)
        jmp     .L53

instead of

.L56:
        .cfi_restore_state
        movq    8(%rsi), %rdx
        movq    (%rsi), %rdi
        movq    %rdx, %rcx
        leaq    (%rdi,%rdi), %rsi
        addq    %rdx, %rdx
        shrq    $63, %rdi
        shrq    $63, %rcx
        xorq    %rdi, %rdx
        imulq   $135, %rcx, %rcx
        movq    %rdx, 8(%rax)
        xorq    %rsi, %rcx
        movq    %rcx, (%rax)
        jmp     .L53

but we see the 128bit move split when using GPRs possibly avoiding the
STLF issue.  I don't understand why we spill to extract the high part though.

Will see to create a small testcase for the above kernel.

With the vectorization disabled for just this kernel I get

AES-128/XTS 280780 key schedule/sec; 0.00 ms/op 12122 cycles/op (2 ops in 0 ms)
AES-128/XTS encrypt buffer size 1024 bytes: 852.401 MiB/sec 4.14 cycles/byte
(426.20 MiB in 500.00 ms)
AES-128/XTS decrypt buffer size 1024 bytes: 854.461 MiB/sec 4.13 cycles/byte
(426.20 MiB in 498.80 ms)

compared to

ES-128/XTS 286409 key schedule/sec; 0.00 ms/op 11761 cycles/op (2 ops in 0 ms)
AES-128/XTS encrypt buffer size 1024 bytes: 765.736 MiB/sec 4.62 cycles/byte
(382.87 MiB in 500.00 ms)
AES-128/XTS decrypt buffer size 1024 bytes: 766.612 MiB/sec 4.61 cycles/byte
(382.87 MiB in 499.43 ms)

so that seems to be it.

Reply via email to