Hi,

When I try to build LAPACK (http://www.netlib.org/lapack/) I get the following
ICE when I try to compile clatm5.f:

[EMAIL PROTECTED] MATGEN]$ gfortran -ffast-math -O3 -c clatm5.f
clatm5.f: In function 'clatm5':
clatm5.f:1: internal compiler error: Segmentation fault
Please submit a full bug report,
with preprocessed source if appropriate.
See <URL:http://gcc.gnu.org/bugs.html> for instructions.

Note:

[EMAIL PROTECTED] MATGEN]$ gfortran -v
Using built-in specs.
Target: x86_64-unknown-linux-gnu
Configured with: ../../gcc-4.1.0/configure --prefix=/usr/local/gcc41
--enable-shared --enable-threads=posix --with-system-zlib --enable-__cxa_atexit
--enable-languages=c,c++,fortran
Thread model: posix
gcc version 4.1.0

[EMAIL PROTECTED] MATGEN]$ uname -a
Linux fn3 2.6.12-1.1447_FC4smp #1 SMP Fri Aug 26 21:03:12 EDT 2005 x86_64
x86_64 x86_64 GNU/Linux

(Slightly patched Fedora Core 4 distro)

Note also that the clatm5.f file is not part of the liblapack.a library itself.
It comes in the LAPACK package and it is used by example programs to test the
LAPACK library. We can live without it.

Here it is:

      SUBROUTINE CLATM5( PRTYPE, M, N, A, LDA, B, LDB, C, LDC, D, LDD,
     $                   E, LDE, F, LDF, R, LDR, L, LDL, ALPHA, QBLCKA,
     $                   QBLCKB )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDB, LDC, LDD, LDE, LDF, LDL, LDR, M, N,
     $                   PRTYPE, QBLCKA, QBLCKB
      REAL               ALPHA
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   D( LDD, * ), E( LDE, * ), F( LDF, * ),
     $                   L( LDL, * ), R( LDR, * )
*     ..
*
*  Purpose
*  =======
*
*  CLATM5 generates matrices involved in the Generalized Sylvester
*  equation:
*
*      A * R - L * B = C
*      D * R - L * E = F
*
*  They also satisfy (the diagonalization condition)
*
*   [ I -L ] ( [ A  -C ], [ D -F ] ) [ I  R ] = ( [ A    ], [ D    ] )
*   [    I ] ( [     B ]  [    E ] ) [    I ]   ( [    B ]  [    E ] )
*
*
*  Arguments
*  =========
*
*  PRTYPE  (input) INTEGER
*          "Points" to a certian type of the matrices to generate
*          (see futher details).
*
*  M       (input) INTEGER
*          Specifies the order of A and D and the number of rows in
*          C, F,  R and L.
*
*  N       (input) INTEGER
*          Specifies the order of B and E and the number of columns in
*          C, F, R and L.
*
*  A       (output) COMPLEX array, dimension (LDA, M).
*          On exit A M-by-M is initialized according to PRTYPE.
*
*  LDA     (input) INTEGER
*          The leading dimension of A.
*
*  B       (output) COMPLEX array, dimension (LDB, N).
*          On exit B N-by-N is initialized according to PRTYPE.
*
*  LDB     (input) INTEGER
*          The leading dimension of B.
*
*  C       (output) COMPLEX array, dimension (LDC, N).
*          On exit C M-by-N is initialized according to PRTYPE.
*
*  LDC     (input) INTEGER
*          The leading dimension of C.
*
*  D       (output) COMPLEX array, dimension (LDD, M).
*          On exit D M-by-M is initialized according to PRTYPE.
*
*  LDD     (input) INTEGER
*          The leading dimension of D.
*
*  E       (output) COMPLEX array, dimension (LDE, N).
*          On exit E N-by-N is initialized according to PRTYPE.
*
*  LDE     (input) INTEGER
*          The leading dimension of E.
*
*  F       (output) COMPLEX array, dimension (LDF, N).
*          On exit F M-by-N is initialized according to PRTYPE.
*
*  LDF     (input) INTEGER
*          The leading dimension of F.
*
*  R       (output) COMPLEX array, dimension (LDR, N).
*          On exit R M-by-N is initialized according to PRTYPE.
*
*  LDR     (input) INTEGER
*          The leading dimension of R.
*
*  L       (output) COMPLEX array, dimension (LDL, N).
*          On exit L M-by-N is initialized according to PRTYPE.
*
*  LDL     (input) INTEGER
*          The leading dimension of L.
*
*  ALPHA   (input) REAL
*          Parameter used in generating PRTYPE = 1 and 5 matrices.
*
*  QBLCKA  (input) INTEGER
*          When PRTYPE = 3, specifies the distance between 2-by-2
*          blocks on the diagonal in A. Otherwise, QBLCKA is not
*          referenced. QBLCKA > 1.
*
*  QBLCKB  (input) INTEGER
*          When PRTYPE = 3, specifies the distance between 2-by-2
*          blocks on the diagonal in B. Otherwise, QBLCKB is not
*          referenced. QBLCKB > 1.
*
*
*  Further Details
*  ===============
*
*  PRTYPE = 1: A and B are Jordan blocks, D and E are identity matrices
*
*             A : if (i == j) then A(i, j) = 1.0
*                 if (j == i + 1) then A(i, j) = -1.0
*                 else A(i, j) = 0.0,            i, j = 1...M
*
*             B : if (i == j) then B(i, j) = 1.0 - ALPHA
*                 if (j == i + 1) then B(i, j) = 1.0
*                 else B(i, j) = 0.0,            i, j = 1...N
*
*             D : if (i == j) then D(i, j) = 1.0
*                 else D(i, j) = 0.0,            i, j = 1...M
*
*             E : if (i == j) then E(i, j) = 1.0
*                 else E(i, j) = 0.0,            i, j = 1...N
*
*             L =  R are chosen from [-10...10],
*                  which specifies the right hand sides (C, F).
*
*  PRTYPE = 2 or 3: Triangular and/or quasi- triangular.
*
*             A : if (i <= j) then A(i, j) = [-1...1]
*                 else A(i, j) = 0.0,             i, j = 1...M
*
*                 if (PRTYPE = 3) then
*                    A(k + 1, k + 1) = A(k, k)
*                    A(k + 1, k) = [-1...1]
*                    sign(A(k, k + 1) = -(sin(A(k + 1, k))
*                        k = 1, M - 1, QBLCKA
*
*             B : if (i <= j) then B(i, j) = [-1...1]
*                 else B(i, j) = 0.0,            i, j = 1...N
*
*                 if (PRTYPE = 3) then
*                    B(k + 1, k + 1) = B(k, k)
*                    B(k + 1, k) = [-1...1]
*                    sign(B(k, k + 1) = -(sign(B(k + 1, k))
*                        k = 1, N - 1, QBLCKB
*
*             D : if (i <= j) then D(i, j) = [-1...1].
*                 else D(i, j) = 0.0,            i, j = 1...M
*
*
*             E : if (i <= j) then D(i, j) = [-1...1]
*                 else E(i, j) = 0.0,            i, j = 1...N
*
*                 L, R are chosen from [-10...10],
*                 which specifies the right hand sides (C, F).
*
*  PRTYPE = 4 Full
*             A(i, j) = [-10...10]
*             D(i, j) = [-1...1]    i,j = 1...M
*             B(i, j) = [-10...10]
*             E(i, j) = [-1...1]    i,j = 1...N
*             R(i, j) = [-10...10]
*             L(i, j) = [-1...1]    i = 1..M ,j = 1...N
*
*             L, R specifies the right hand sides (C, F).
*
*  PRTYPE = 5 special case common and/or close eigs.
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE, TWO, ZERO, HALF, TWENTY
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
     $                   TWO = ( 2.0E+0, 0.0E+0 ),
     $                   ZERO = ( 0.0E+0, 0.0E+0 ),
     $                   HALF = ( 0.5E+0, 0.0E+0 ),
     $                   TWENTY = ( 2.0E+1, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, K
      COMPLEX            IMEPS, REEPS
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CMPLX, MOD, SIN
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMM
*     ..
*     .. Executable Statements ..
*
      IF( PRTYPE.EQ.1 ) THEN
         DO 20 I = 1, M
            DO 10 J = 1, M
               IF( I.EQ.J ) THEN
                  A( I, J ) = ONE
                  D( I, J ) = ONE
               ELSE IF( I.EQ.J-1 ) THEN
                  A( I, J ) = -ONE
                  D( I, J ) = ZERO
               ELSE
                  A( I, J ) = ZERO
                  D( I, J ) = ZERO
               END IF
   10       CONTINUE
   20    CONTINUE
*
         DO 40 I = 1, N
            DO 30 J = 1, N
               IF( I.EQ.J ) THEN
                  B( I, J ) = ONE - ALPHA
                  E( I, J ) = ONE
               ELSE IF( I.EQ.J-1 ) THEN
                  B( I, J ) = ONE
                  E( I, J ) = ZERO
               ELSE
                  B( I, J ) = ZERO
                  E( I, J ) = ZERO
               END IF
   30       CONTINUE
   40    CONTINUE
*
         DO 60 I = 1, M
            DO 50 J = 1, N
               R( I, J ) = ( HALF-SIN( CMPLX( I / J ) ) )*TWENTY
               L( I, J ) = R( I, J )
   50       CONTINUE
   60    CONTINUE
*
      ELSE IF( PRTYPE.EQ.2 .OR. PRTYPE.EQ.3 ) THEN
         DO 80 I = 1, M
            DO 70 J = 1, M
               IF( I.LE.J ) THEN
                  A( I, J ) = ( HALF-SIN( CMPLX( I ) ) )*TWO
                  D( I, J ) = ( HALF-SIN( CMPLX( I*J ) ) )*TWO
               ELSE
                  A( I, J ) = ZERO
                  D( I, J ) = ZERO
               END IF
   70       CONTINUE
   80    CONTINUE
*
         DO 100 I = 1, N
            DO 90 J = 1, N
               IF( I.LE.J ) THEN
                  B( I, J ) = ( HALF-SIN( CMPLX( I+J ) ) )*TWO
                  E( I, J ) = ( HALF-SIN( CMPLX( J ) ) )*TWO
               ELSE
                  B( I, J ) = ZERO
                  E( I, J ) = ZERO
               END IF
   90       CONTINUE
  100    CONTINUE
*
         DO 120 I = 1, M
            DO 110 J = 1, N
               R( I, J ) = ( HALF-SIN( CMPLX( I*J ) ) )*TWENTY
               L( I, J ) = ( HALF-SIN( CMPLX( I+J ) ) )*TWENTY
  110       CONTINUE
  120    CONTINUE
*
         IF( PRTYPE.EQ.3 ) THEN
            IF( QBLCKA.LE.1 )
     $         QBLCKA = 2
            DO 130 K = 1, M - 1, QBLCKA
               A( K+1, K+1 ) = A( K, K )
               A( K+1, K ) = -SIN( A( K, K+1 ) )
  130       CONTINUE
*
            IF( QBLCKB.LE.1 )
     $         QBLCKB = 2
            DO 140 K = 1, N - 1, QBLCKB
               B( K+1, K+1 ) = B( K, K )
               B( K+1, K ) = -SIN( B( K, K+1 ) )
  140       CONTINUE
         END IF
*
      ELSE IF( PRTYPE.EQ.4 ) THEN
         DO 160 I = 1, M
            DO 150 J = 1, M
               A( I, J ) = ( HALF-SIN( CMPLX( I*J ) ) )*TWENTY
               D( I, J ) = ( HALF-SIN( CMPLX( I+J ) ) )*TWO
  150       CONTINUE
  160    CONTINUE
*
         DO 180 I = 1, N
            DO 170 J = 1, N
               B( I, J ) = ( HALF-SIN( CMPLX( I+J ) ) )*TWENTY
               E( I, J ) = ( HALF-SIN( CMPLX( I*J ) ) )*TWO
  170       CONTINUE
  180    CONTINUE
*
         DO 200 I = 1, M
            DO 190 J = 1, N
               R( I, J ) = ( HALF-SIN( CMPLX( J / I ) ) )*TWENTY
               L( I, J ) = ( HALF-SIN( CMPLX( I*J ) ) )*TWO
  190       CONTINUE
  200    CONTINUE
*
      ELSE IF( PRTYPE.GE.5 ) THEN
         REEPS = HALF*TWO*TWENTY / ALPHA
         IMEPS = ( HALF-TWO ) / ALPHA
         DO 220 I = 1, M
            DO 210 J = 1, N
               R( I, J ) = ( HALF-SIN( CMPLX( I*J ) ) )*ALPHA / TWENTY
               L( I, J ) = ( HALF-SIN( CMPLX( I+J ) ) )*ALPHA / TWENTY
  210       CONTINUE
  220    CONTINUE
*
         DO 230 I = 1, M
            D( I, I ) = ONE
  230    CONTINUE
*
         DO 240 I = 1, M
            IF( I.LE.4 ) THEN
               A( I, I ) = ONE
               IF( I.GT.2 )
     $            A( I, I ) = ONE + REEPS
               IF( MOD( I, 2 ).NE.0 .AND. I.LT.M ) THEN
                  A( I, I+1 ) = IMEPS
               ELSE IF( I.GT.1 ) THEN
                  A( I, I-1 ) = -IMEPS
               END IF
            ELSE IF( I.LE.8 ) THEN
               IF( I.LE.6 ) THEN
                  A( I, I ) = REEPS
               ELSE
                  A( I, I ) = -REEPS
               END IF
               IF( MOD( I, 2 ).NE.0 .AND. I.LT.M ) THEN
                  A( I, I+1 ) = ONE
               ELSE IF( I.GT.1 ) THEN
                  A( I, I-1 ) = -ONE
               END IF
            ELSE
               A( I, I ) = ONE
               IF( MOD( I, 2 ).NE.0 .AND. I.LT.M ) THEN
                  A( I, I+1 ) = IMEPS*2
               ELSE IF( I.GT.1 ) THEN
                  A( I, I-1 ) = -IMEPS*2
               END IF
            END IF
  240    CONTINUE
*
         DO 250 I = 1, N
            E( I, I ) = ONE
            IF( I.LE.4 ) THEN
               B( I, I ) = -ONE
               IF( I.GT.2 )
     $            B( I, I ) = ONE - REEPS
               IF( MOD( I, 2 ).NE.0 .AND. I.LT.N ) THEN
                  B( I, I+1 ) = IMEPS
               ELSE IF( I.GT.1 ) THEN
                  B( I, I-1 ) = -IMEPS
               END IF
            ELSE IF( I.LE.8 ) THEN
               IF( I.LE.6 ) THEN
                  B( I, I ) = REEPS
               ELSE
                  B( I, I ) = -REEPS
               END IF
               IF( MOD( I, 2 ).NE.0 .AND. I.LT.N ) THEN
                  B( I, I+1 ) = ONE + IMEPS
               ELSE IF( I.GT.1 ) THEN
                  B( I, I-1 ) = -ONE - IMEPS
               END IF
            ELSE
               B( I, I ) = ONE - REEPS
               IF( MOD( I, 2 ).NE.0 .AND. I.LT.N ) THEN
                  B( I, I+1 ) = IMEPS*2
               ELSE IF( I.GT.1 ) THEN
                  B( I, I-1 ) = -IMEPS*2
               END IF
            END IF
  250    CONTINUE
      END IF
*
*     Compute rhs (C, F)
*
      CALL CGEMM( 'N', 'N', M, N, M, ONE, A, LDA, R, LDR, ZERO, C, LDC )
      CALL CGEMM( 'N', 'N', M, N, N, -ONE, L, LDL, B, LDB, ONE, C, LDC )
      CALL CGEMM( 'N', 'N', M, N, M, ONE, D, LDD, R, LDR, ZERO, F, LDF )
      CALL CGEMM( 'N', 'N', M, N, N, -ONE, L, LDL, E, LDE, ONE, F, LDF )
*
*     End of CLATM5
*
      END


-- 
           Summary: ICE when compiling with -ffast-math and -O3 clatm5.f
                    (lapack)
           Product: gcc
           Version: 4.1.0
            Status: UNCONFIRMED
          Severity: major
          Priority: P3
         Component: fortran
        AssignedTo: unassigned at gcc dot gnu dot org
        ReportedBy: martin dot audet at imi dot cnrc-nrc dot gc dot ca
  GCC host triplet: x86_64-unknown-linux-gnu


http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26524

Reply via email to