> -----Original Message-----
> From: ffmpeg-devel <[email protected]> On Behalf Of Pedro
> Arthur
> Sent: 2020年6月28日 23:29
> To: FFmpeg development discussions and patches <[email protected]>
> Subject: Re: [FFmpeg-devel] [PATCH V2 2/2] vf_dnn_processing.c: add dnn
> backend openvino
> 
> Hi,
> 
> Em qua., 24 de jun. de 2020 às 03:40, Guo, Yejun <[email protected]>
> escreveu:
> 
> >
> >
> > > -----Original Message-----
> > > From: Guo, Yejun <[email protected]>
> > > Sent: 2020年6月11日 21:01
> > > To: [email protected]
> > > Cc: Guo, Yejun <[email protected]>
> > > Subject: [PATCH V2 2/2] vf_dnn_processing.c: add dnn backend
> > > openvino
> > >
> > > We can try with the srcnn model from sr filter.
> > > 1) get srcnn.pb model file, see filter sr
> > > 2) convert srcnn.pb into openvino model with command:
> > > python mo_tf.py --input_model srcnn.pb --data_type=FP32
> > > --input_shape [1,960,1440,1] --keep_shape_ops
> > >
> > > See the script at
> > > https://github.com/openvinotoolkit/openvino/tree/master/model-optimi
> > > zer We'll see srcnn.xml and srcnn.bin at current path, copy them to
> > > the
> > directory
> > > where ffmpeg is.
> > >
> > > I have also uploaded the model files at
> > > https://github.com/guoyejun/dnn_processing/tree/master/models
> > >
> > > 3) run with openvino backend:
> > > ffmpeg -i input.jpg -vf
> > >
> format=yuv420p,scale=w=iw*2:h=ih*2,dnn_processing=dnn_backend=openvi
> > > no :model=srcnn.xml:input=x:output=srcnn/Maximum -y srcnn.ov.jpg
> > > (The input.jpg resolution is 720*480)
> > >
> > > Signed-off-by: Guo, Yejun <[email protected]>
> > > ---
> > >  doc/filters.texi                | 10 +++++++++-
> > >  libavfilter/vf_dnn_processing.c |  5 ++++-
> > >  2 files changed, 13 insertions(+), 2 deletions(-)
> >
> > any comment for this patch set? thanks.
> >
> It would be nice if you include some benchmark numbers, comparing it with the
> others backends.
> Rest LGTM, thanks!

Thanks Pedro, I tried srcnn model on a half-minute video to check the 
performance of tesorflow
backend (libtensorflow-cpu-linux-x86_64-1.14.0.tar.gz) and openvino backend 
with cpu path. 
The openvino backend does not cost more time. Actually, current openvino patch 
did not
enable throughput mode which increases performance a lot, see more detail at 
https://docs.openvinotoolkit.org/latest/_docs_optimization_guide_dldt_optimization_guide.html#cpu-streams

I plan to enable the features for performance next, for example, use filter's 
activate interface,
enable batch frames for one inference (they are common for different backends) 
and also
the throughput mode (in openvino backend), etc.

will push the patch tomorrow if no other comments, thanks.

_______________________________________________
ffmpeg-devel mailing list
[email protected]
https://ffmpeg.org/mailman/listinfo/ffmpeg-devel

To unsubscribe, visit link above, or email
[email protected] with subject "unsubscribe".

Reply via email to