coffezhou opened a new issue, #18600:
URL: https://github.com/apache/tvm/issues/18600

   ### Expected behavior
   
   TVM should run the model correctly.
   
   ### Actual behavior
   
   For the following simple model,
   
   <img width="890" height="580" alt="Image" 
src="https://github.com/user-attachments/assets/cb3b5dd8-c2dd-43f8-b31e-b9b11e60622e";
 />
   
   it can be executed by onnxruntime and onnx's ReferenceEvaluator, the results 
are as follows:
   ```
   [[[[-14.942039    25.242477    12.100965   ...  57.370975
        43.9531       2.7949858 ]
      [ 10.37292    -10.740159   -38.21392    ... -25.30576
        20.154476   -19.093735  ]
      [ 23.041002    41.820953   -34.108677   ...  13.982165
         7.2081375   11.132856  ]
      ...
      [ -5.590187   -30.208424     9.572759   ...  32.32894
        10.533618   -10.12186   ]
      [-11.91229     29.118868   -20.662777   ... -16.910463
        -3.0499296   -8.469831  ]
      [ -1.340055   -17.950693     1.7485574  ...  44.479458
        11.766148   -29.151772  ]]
   
     [[  3.5306716  -17.110134   -12.246135   ...   3.6663613
        10.713657    18.570526  ]
      [ 14.867607    -7.739101   -32.685593   ...  -8.97093
       -14.347578    32.1913    ]
      [  7.462762   -14.961873   -18.268976   ... -16.221258
         9.145517    22.871971  ]
      ...
      [ 58.016407   -28.310326    27.333632   ...  33.982685
        -0.22384354  44.509457  ]
      [-27.212149   -17.831676     7.140829   ...  10.431597
        33.523167   -36.84701   ]
      [  4.2589498  -18.459444     9.673733   ... -21.87571
        11.560403   -11.319146  ]]
   
     [[  1.6221294  -24.357258    37.832687   ... -15.675017
        17.112104   -19.541176  ]
      [ -1.9535408  -43.395298    -7.589774   ...  32.80785
        39.018574    -9.826303  ]
      [ 23.802937   -22.675396     2.9990005  ... -29.012583
        55.184933    16.124914  ]
      ...
      [ 13.447808     1.2474155   68.31904    ... -33.191654
         7.361887   -14.480252  ]
      [  8.724002   -44.378754    -3.259966   ... -43.776226
        47.07514      4.846405  ]
      [-28.980995     0.75377727 -20.248524   ... -13.6773405
        34.299976    -5.997253  ]]
   
     ...
   
     [[-33.108776   -16.460379     7.451367   ...  -3.0716655
         8.792357     9.199628  ]
      [-10.372536   -22.135944   -21.878239   ...  55.7764
        -7.191108   -14.206541  ]
      [-53.47607     10.408365   -20.441448   ...  23.109488
         1.2017591    6.3908386 ]
      ...
      [ -0.9444683  -29.720179   -36.938797   ... -32.23233
       -35.5812      42.359478  ]
      [-28.41974     -0.1681884  -38.875988   ...  14.968706
       -23.108547   -32.480797  ]
      [  2.9518757    1.1772063  -21.35058    ... -24.29589
         1.791322    -2.575415  ]]
   
     [[ -1.1625404   -6.98105    -10.189097   ... -26.975689
       -14.790653    -8.432305  ]
      [ 17.315321    34.95646    -33.681236   ...  -8.27439
         9.273292   -20.079172  ]
      [ -9.413344    25.616909    -8.439555   ... -17.31526
        18.547462   -18.068047  ]
      ...
      [  0.11532002 -46.406166   -29.583313   ... -17.339268
        17.583694    38.199493  ]
      [-49.912685    10.065314   -67.41777    ... -17.945366
       -17.426779    24.320415  ]
      [ -9.248135     4.745124    -5.5740147  ...  33.417686
        -3.3946886    4.773201  ]]
   
     [[-11.940619     1.2533135  -15.480752   ...  17.695894
        23.379114    -6.3436594 ]
      [ -2.8251894   -1.4625757   12.186805   ... -25.161877
         6.0388117   -8.681617  ]
      [ 37.58026      7.1358566  -53.616978   ...  49.06318
        -9.981028    15.518544  ]
      ...
      [-19.931892    23.587257   -68.27191    ... -25.605322
       -31.568523     0.6990657 ]
      [ 56.762306    -4.785701     3.260337   ...   2.4171884
       -50.66727    -23.977222  ]
      [ 13.220358   -13.136884    18.563856   ...  -9.229172
       -32.588108    27.032162  ]]]]
   ```
   
   However, the onnx frontend of TVM cannot import it:
   ```
   File "/home/ubuntu/Documents/test1.py", line 49, in test
       tvm_model = from_onnx(onnx_model, opset=14, keep_params_in_input=True)
                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
     File 
"/home/ubuntu/Documents/DLCompilers/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py",
 line 4260, in from_onnx
       return g.from_onnx(graph, opset)
              ^^^^^^^^^^^^^^^^^^^^^^^^^
     File 
"/home/ubuntu/Documents/DLCompilers/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py",
 line 3890, in from_onnx
       self._construct_nodes(graph)
     File 
"/home/ubuntu/Documents/DLCompilers/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py",
 line 4071, in _construct_nodes
       raise err
     File 
"/home/ubuntu/Documents/DLCompilers/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py",
 line 4068, in _construct_nodes
       op = self.bb.normalize(op)
            ^^^^^^^^^^^^^^^^^^^^^
     File 
"/home/ubuntu/Documents/DLCompilers/tvm/python/tvm/relax/block_builder.py", 
line 672, in normalize
       return _ffi_api.BlockBuilderNormalize(self, expr)  # type: ignore
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
     File "python/tvm_ffi/cython/function.pxi", line 904, in 
tvm_ffi.core.Function.__call__
     File "<unknown>", line 0, in 
tvm::relax::Normalizer::Normalize(tvm::RelaxExpr const&)
     File "<unknown>", line 0, in tvm::relax::ExprFunctor<tvm::RelaxExpr 
(tvm::RelaxExpr const&)>::VisitExpr(tvm::RelaxExpr const&)
     File "<unknown>", line 0, in tvm::relax::ExprFunctor<tvm::RelaxExpr 
(tvm::RelaxExpr const&)>::InitVTable()::{lambda(tvm::ffi::ObjectRef const&, 
tvm::relax::ExprFunctor<tvm::RelaxExpr (tvm::RelaxExpr 
const&)>*)#9}::_FUN(tvm::ffi::ObjectRef const&, 
tvm::relax::ExprFunctor<tvm::RelaxExpr (tvm::RelaxExpr const&)>*)
     File "<unknown>", line 0, in 
tvm::relax::Normalizer::VisitExpr_(tvm::relax::CallNode const*)
     File "<unknown>", line 0, in 
tvm::relax::Normalizer::InferStructInfo(tvm::relax::Call const&)
     File "<unknown>", line 0, in 
tvm::relax::InferStructInfoBroadcastArith(tvm::relax::Call const&, 
tvm::relax::BlockBuilder const&)
     File "<unknown>", line 0, in tvm::relax::StructInfo 
tvm::relax::InferStructInfoBroadcast<tvm::runtime::DataType 
(*)(tvm::relax::Call const&, tvm::relax::BlockBuilder const&, 
tvm::relax::StructInfo const&, tvm::relax::StructInfo const&)>(tvm::relax::Call 
const&, tvm::relax::BlockBuilder const&, tvm::runtime::DataType 
(*)(tvm::relax::Call const&, tvm::relax::BlockBuilder const&, 
tvm::relax::StructInfo const&, tvm::relax::StructInfo const&))
     File "<unknown>", line 0, in 
tvm::relax::InferBinaryBroadcastShape(tvm::relax::Call const&, 
tvm::relax::BlockBuilder const&, tvm::ffi::Array<tvm::PrimExpr, void> const&, 
tvm::ffi::Array<tvm::PrimExpr, void> const&)
     File "<unknown>", line 0, in 
tvm::relax::BlockBuilderImpl::ReportFatal(tvm::Diagnostic const&)
     File "<unknown>", line 0, in 
tvm::runtime::detail::LogFatal::Entry::Finalize()
   tvm.error.InternalError: In Op(relax.add), the first input shape at dim 1 is 
T.int64(16) and the second input shape at dim 1 is T.int64(32), which are not 
broadcastable.
   [11:03:35] 
/home/ubuntu/Documents/DLCompilers/tvm/src/relax/ir/block_builder.cc:64: 
Warning: BlockBuilder destroyed with remaining blocks!
   ```
   
   ### Environment
   
   OS: Ubuntu 20.04
   TVM: 0.23.dev0 
(https://github.com/apache/tvm/commit/f4e28d3153323ad97a7e74740c9fb22300fd6cd0)
   
   onnxruntime: 1.23.2
   
   ### Steps to reproduce
   
   This bug can be reproduced by the following code with the model in the 
attachment.
   ```python
   from typing import Dict, List, Literal, Optional
   import sys
   import os
   
   import numpy as np
   import onnx
   from onnx.reference import ReferenceEvaluator
   
   import onnxruntime
   from onnx import ModelProto, TensorProto, helper
   
   import tvm
   import tvm.testing
   from tvm import relax
   from tvm.relax.frontend.onnx import from_onnx
   
   import argparse
   import pickle
   
   def test() -> None:
       onnx_model = onnx.load("11.onnx")
       # Configure model format.
       onnx_model.ir_version = 8
       onnx_model.opset_import[0].version = 14
       
       with open("inputs.pkl", 'rb') as fp:
           inputs = pickle.load(fp)
       # Run the model through onnx to get the expected result.
       try:
           ort_session = onnxruntime.InferenceSession(
               onnx_model.SerializeToString(), 
providers=["CPUExecutionProvider"]
           )
           ort_output = ort_session.run([], inputs)
       except Exception as e:
           print(e)
           print("This model cannot be executed by onnxruntime!")
           sys.exit(1)
   
       print("onnxruntime:", ort_output[0])
   
       # ReferenceEvaluator
       sess = ReferenceEvaluator("11.onnx")
       re_output = sess.run(None, inputs)
       print("ReferenceEvaluator:", re_output[0])
   
       tvm.testing.assert_allclose(re_output[0], ort_output[0], rtol=0.1, 
atol=0.1)
   
       # TVM
       tvm_model = from_onnx(onnx_model, opset=14, keep_params_in_input=True)
   
       
       
   if __name__ == "__main__":
       test()
    
   
   ```
   
   
[testcase.zip](https://github.com/user-attachments/files/24303049/testcase.zip)
   
   ### Triage
   
   Please refer to the list of label tags 
[here](https://github.com/apache/tvm/wiki/Issue-Triage-Labels) to find the 
relevant tags and add them below in a bullet format (example below).
   
   * needs-triage
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to