coffezhou opened a new issue, #18598: URL: https://github.com/apache/tvm/issues/18598
### Expected behavior TVM should output right results. ### Actual behavior For the following model, <img width="165" height="273" alt="Image" src="https://github.com/user-attachments/assets/b3e39357-76f0-4aa2-a743-ca432a2fa2b3" /> onnxruntime and onnx's ReferenceEvaluator produce the following results: ``` onnxruntime: [[[[ 0.52760196 -0.04696967 0.13909698 0.33770403] [ 0.00713499 -0.0047839 0.07727996 0.09848484] [ 1.1356945 1.2606536 1.0541786 0.07991865] [ 1.7707846 -0.1069039 0.5416299 1.1630629 ]] [[ 1.5288247 1.5974303 0.04450445 1.2441877 ] [ 0.37789103 0.20678943 0.2639845 0.46727613] [ 1.0393754 2.0902128 0.22515067 1.8636966 ] [ 1.2390026 -0.03022202 0.1429838 2.5852468 ]] [[ 1.0609826 0.19212584 0.23427449 1.3817313 ] [ 0.2130472 0.12426434 0.18794645 1.7725699 ] [ 0.38522267 0.55802476 0.48586282 0.12431115] [ 1.6056815 -0.088125 0.46956664 0.5826947 ]] [[ 0.4485376 3.0486135 0.2851691 1.221788 ] [ 0.12897041 0.56625 0.20755884 0.8285841 ] [ 0.7572699 -0.03610509 0.8448761 1.3712262 ] [ 0.9805093 0.9206943 1.141221 2.1911495 ]]]] ReferenceEvaluator [[[[ 0.52760196 -0.04696967 0.13909698 0.33770403] [ 0.00713499 -0.0047839 0.07727996 0.09848484] [ 1.1356945 1.2606536 1.0541786 0.07991865] [ 1.7707846 -0.1069039 0.5416299 1.1630629 ]] [[ 1.5288247 1.5974303 0.04450445 1.2441877 ] [ 0.37789103 0.20678943 0.2639845 0.46727613] [ 1.0393754 2.0902128 0.22515067 1.8636966 ] [ 1.2390026 -0.03022202 0.1429838 2.5852468 ]] [[ 1.0609826 0.19212584 0.23427449 1.3817313 ] [ 0.2130472 0.12426434 0.18794645 1.7725699 ] [ 0.38522267 0.55802476 0.48586282 0.12431115] [ 1.6056815 -0.088125 0.46956664 0.5826947 ]] [[ 0.4485376 3.0486135 0.2851691 1.221788 ] [ 0.12897041 0.56625 0.20755884 0.8285841 ] [ 0.7572699 -0.03610509 0.8448761 1.3712262 ] [ 0.9805093 0.9206943 1.141221 2.1911495 ]]]] ``` However, TVM outputs different results as follows: ``` TVM: [[[[0.52760196 0.50379753 0.13909698 0.23304316] [0.00713499 0.05131219 0.07727996 0.09848484] [1.1356945 1.2606536 1.8464966 0.05515035] [1.7707846 1.1466533 0.94871765 1.1630629 ]] [[1.5288247 1.5974303 0.07795388 1.2441877 ] [0.37789103 0.20678943 0.2639845 0.32245842] [1.0393754 2.0902128 0.3943734 1.8636966 ] [1.2390026 0.3241619 0.25045007 1.78403 ]] [[1.0609826 0.19212584 0.4103546 1.3817313 ] [0.2130472 0.12426434 0.18794645 1.223217 ] [0.38522267 0.55802476 0.85103613 0.12431115] [1.6056815 0.94523036 0.82249177 0.5826947 ]] [[0.4485376 3.0486135 0.2851691 1.221788 ] [0.12897041 0.56625 0.20755884 0.8285841 ] [0.7572699 0.3872638 0.8448761 1.3712262 ] [0.9805093 0.9206943 1.141221 1.5120709 ]]]] ``` 21.9% elements (14 / 64) are mismatched. ``` Mismatched elements: 14 / 64 (21.9%) Max absolute difference among violations: 1.2535572 Max relative difference among violations: 11.726019 ACTUAL: array([[[[0.527602, 0.503798, 0.139097, 0.233043], [0.007135, 0.051312, 0.07728 , 0.098485], [1.135695, 1.260654, 1.846497, 0.05515 ],... DESIRED: array([[[[ 0.527602, -0.04697 , 0.139097, 0.337704], [ 0.007135, -0.004784, 0.07728 , 0.098485], [ 1.135695, 1.260654, 1.054179, 0.079919],... ``` ### Environment OS: Ubuntu 20.04 TVM: 0.23.dev0 (https://github.com/apache/tvm/commit/f4e28d3153323ad97a7e74740c9fb22300fd6cd0) onnxruntime: 1.23.2 ### Steps to reproduce This bug can be reproduced by the following code with the model in the attachment. ```python import numpy as np import onnx from onnx.reference import ReferenceEvaluator import onnxruntime import tvm import tvm.testing from tvm import relax from tvm.relax.frontend.onnx import from_onnx import pickle def test() -> None: onnx_model = onnx.load("11.onnx") # Configure model format. onnx_model.ir_version = 8 onnx_model.opset_import[0].version = 14 with open("inputs.pkl", 'rb') as fp: inputs = pickle.load(fp) # onnxruntime. try: ort_session = onnxruntime.InferenceSession( onnx_model.SerializeToString(), providers=["CPUExecutionProvider"] ) ort_output = ort_session.run([], inputs) except Exception as e: print(e) print("This model cannot be executed by onnxruntime!") sys.exit(1) print(ort_output[0]) # ReferenceEvaluator sess = ReferenceEvaluator("11.onnx") re_output = sess.run(None, inputs) print(re_output[0]) tvm.testing.assert_allclose(re_output[0], ort_output[0], rtol=0.1, atol=0.1) # TVM tvm_model = from_onnx(onnx_model, opset=14, keep_params_in_input=True) tvm_model = relax.transform.DecomposeOpsForInference()(tvm_model) tvm_model = relax.transform.LegalizeOps()(tvm_model) # Separate model from parameters. tvm_model, params = relax.frontend.detach_params(tvm_model) # Compile the relax graph into a VM then run. with tvm.transform.PassContext(opt_level=3): ex = tvm.compile(tvm_model, target="llvm") vm = relax.VirtualMachine(ex, tvm.cpu()) # Prepare inputs. input_list = [ inputs[key.name_hint] for key in tvm_model["main"].params if key.name_hint in inputs ] if params: input_list += params["main"] # Run model and check outputs. vm.set_input("main", *input_list) vm.invoke_stateful("main") tvm_output = vm.get_outputs("main") print(tvm_output) tvm.testing.assert_allclose(tvm_output.numpy(), ort_output[0], rtol=0.1, atol=0.1) if __name__ == "__main__": test() ``` [testcase.zip](https://github.com/user-attachments/files/24302719/testcase.zip) ### Triage Please refer to the list of label tags [here](https://github.com/apache/tvm/wiki/Issue-Triage-Labels) to find the relevant tags and add them below in a bullet format (example below). * needs-triage -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: [email protected] For queries about this service, please contact Infrastructure at: [email protected] --------------------------------------------------------------------- To unsubscribe, e-mail: [email protected] For additional commands, e-mail: [email protected]
