coffezhou opened a new issue, #18598:
URL: https://github.com/apache/tvm/issues/18598

   ### Expected behavior
   
   TVM should output right results.
   
   ### Actual behavior
   For the following model,
   
   <img width="165" height="273" alt="Image" 
src="https://github.com/user-attachments/assets/b3e39357-76f0-4aa2-a743-ca432a2fa2b3";
 />
   
   onnxruntime and onnx's ReferenceEvaluator produce the following results:
   ```
   onnxruntime: [[[[ 0.52760196 -0.04696967  0.13909698  0.33770403]
      [ 0.00713499 -0.0047839   0.07727996  0.09848484]
      [ 1.1356945   1.2606536   1.0541786   0.07991865]
      [ 1.7707846  -0.1069039   0.5416299   1.1630629 ]]
   
     [[ 1.5288247   1.5974303   0.04450445  1.2441877 ]
      [ 0.37789103  0.20678943  0.2639845   0.46727613]
      [ 1.0393754   2.0902128   0.22515067  1.8636966 ]
      [ 1.2390026  -0.03022202  0.1429838   2.5852468 ]]
   
     [[ 1.0609826   0.19212584  0.23427449  1.3817313 ]
      [ 0.2130472   0.12426434  0.18794645  1.7725699 ]
      [ 0.38522267  0.55802476  0.48586282  0.12431115]
      [ 1.6056815  -0.088125    0.46956664  0.5826947 ]]
   
     [[ 0.4485376   3.0486135   0.2851691   1.221788  ]
      [ 0.12897041  0.56625     0.20755884  0.8285841 ]
      [ 0.7572699  -0.03610509  0.8448761   1.3712262 ]
      [ 0.9805093   0.9206943   1.141221    2.1911495 ]]]]
   
   ReferenceEvaluator [[[[ 0.52760196 -0.04696967  0.13909698  0.33770403]
      [ 0.00713499 -0.0047839   0.07727996  0.09848484]
      [ 1.1356945   1.2606536   1.0541786   0.07991865]
      [ 1.7707846  -0.1069039   0.5416299   1.1630629 ]]
   
     [[ 1.5288247   1.5974303   0.04450445  1.2441877 ]
      [ 0.37789103  0.20678943  0.2639845   0.46727613]
      [ 1.0393754   2.0902128   0.22515067  1.8636966 ]
      [ 1.2390026  -0.03022202  0.1429838   2.5852468 ]]
   
     [[ 1.0609826   0.19212584  0.23427449  1.3817313 ]
      [ 0.2130472   0.12426434  0.18794645  1.7725699 ]
      [ 0.38522267  0.55802476  0.48586282  0.12431115]
      [ 1.6056815  -0.088125    0.46956664  0.5826947 ]]
   
     [[ 0.4485376   3.0486135   0.2851691   1.221788  ]
      [ 0.12897041  0.56625     0.20755884  0.8285841 ]
      [ 0.7572699  -0.03610509  0.8448761   1.3712262 ]
      [ 0.9805093   0.9206943   1.141221    2.1911495 ]]]]
   ```
   
   However, TVM outputs different results as follows:
   ```
   TVM: [[[[0.52760196 0.50379753 0.13909698 0.23304316]
      [0.00713499 0.05131219 0.07727996 0.09848484]
      [1.1356945  1.2606536  1.8464966  0.05515035]
      [1.7707846  1.1466533  0.94871765 1.1630629 ]]
   
     [[1.5288247  1.5974303  0.07795388 1.2441877 ]
      [0.37789103 0.20678943 0.2639845  0.32245842]
      [1.0393754  2.0902128  0.3943734  1.8636966 ]
      [1.2390026  0.3241619  0.25045007 1.78403   ]]
   
     [[1.0609826  0.19212584 0.4103546  1.3817313 ]
      [0.2130472  0.12426434 0.18794645 1.223217  ]
      [0.38522267 0.55802476 0.85103613 0.12431115]
      [1.6056815  0.94523036 0.82249177 0.5826947 ]]
   
     [[0.4485376  3.0486135  0.2851691  1.221788  ]
      [0.12897041 0.56625    0.20755884 0.8285841 ]
      [0.7572699  0.3872638  0.8448761  1.3712262 ]
      [0.9805093  0.9206943  1.141221   1.5120709 ]]]]
   ```
   
   21.9% elements (14 / 64) are mismatched.
   ```
   Mismatched elements: 14 / 64 (21.9%)
   Max absolute difference among violations: 1.2535572
   Max relative difference among violations: 11.726019
    ACTUAL: array([[[[0.527602, 0.503798, 0.139097, 0.233043],
            [0.007135, 0.051312, 0.07728 , 0.098485],
            [1.135695, 1.260654, 1.846497, 0.05515 ],...
    DESIRED: array([[[[ 0.527602, -0.04697 ,  0.139097,  0.337704],
            [ 0.007135, -0.004784,  0.07728 ,  0.098485],
            [ 1.135695,  1.260654,  1.054179,  0.079919],...
   ```
   ### Environment
   
   OS: Ubuntu 20.04
   TVM: 0.23.dev0 
(https://github.com/apache/tvm/commit/f4e28d3153323ad97a7e74740c9fb22300fd6cd0)
   
   onnxruntime: 1.23.2
   
   ### Steps to reproduce
   
   This bug can be reproduced by the following code with the model in the 
attachment.
   ```python
   import numpy as np
   import onnx
   from onnx.reference import ReferenceEvaluator
   import onnxruntime
   
   import tvm
   import tvm.testing
   from tvm import relax
   from tvm.relax.frontend.onnx import from_onnx
   
   import pickle
   
   def test() -> None:
       onnx_model = onnx.load("11.onnx")
       # Configure model format.
       onnx_model.ir_version = 8
       onnx_model.opset_import[0].version = 14
       
       with open("inputs.pkl", 'rb') as fp:
           inputs = pickle.load(fp)
   
       # onnxruntime.
       try:
           ort_session = onnxruntime.InferenceSession(
               onnx_model.SerializeToString(), 
providers=["CPUExecutionProvider"]
           )
           ort_output = ort_session.run([], inputs)
       except Exception as e:
           print(e)
           print("This model cannot be executed by onnxruntime!")
           sys.exit(1)
   
       print(ort_output[0])
   
       # ReferenceEvaluator
       sess = ReferenceEvaluator("11.onnx")
       re_output = sess.run(None, inputs)
       print(re_output[0])
   
       tvm.testing.assert_allclose(re_output[0], ort_output[0], rtol=0.1, 
atol=0.1)
   
       # TVM
       tvm_model = from_onnx(onnx_model, opset=14, keep_params_in_input=True)
       tvm_model = relax.transform.DecomposeOpsForInference()(tvm_model)
       tvm_model = relax.transform.LegalizeOps()(tvm_model)
   
       # Separate model from parameters.
       tvm_model, params = relax.frontend.detach_params(tvm_model)
       # Compile the relax graph into a VM then run.
       with tvm.transform.PassContext(opt_level=3):
           ex = tvm.compile(tvm_model, target="llvm")
           vm = relax.VirtualMachine(ex, tvm.cpu())
       # Prepare inputs.
       input_list = [
           inputs[key.name_hint] for key in tvm_model["main"].params if 
key.name_hint in inputs
       ]
       if params:
           input_list += params["main"]
   
       # Run model and check outputs.
       vm.set_input("main", *input_list)
       vm.invoke_stateful("main")
       tvm_output = vm.get_outputs("main")
   
       print(tvm_output)
   
       tvm.testing.assert_allclose(tvm_output.numpy(), ort_output[0], rtol=0.1, 
atol=0.1)
    
   if __name__ == "__main__": 
       test()
   
   ```
   
   
[testcase.zip](https://github.com/user-attachments/files/24302719/testcase.zip)
   
   ### Triage
   
   Please refer to the list of label tags 
[here](https://github.com/apache/tvm/wiki/Issue-Triage-Labels) to find the 
relevant tags and add them below in a bullet format (example below).
   
   * needs-triage
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to