coffezhou opened a new issue, #18594:
URL: https://github.com/apache/tvm/issues/18594

   ### Expected behavior
   
   The AveragePool operator in TVM should produce right shape.
   
   ### Actual behavior
   For the following model,
   
   <img width="810" height="580" alt="Image" 
src="https://github.com/user-attachments/assets/8d018e15-e353-4e46-82ad-3a4a55e9e4fc";
 />
   
   when ceil_mode = 1,  the shapes of maxpool_output and avgpool_output are as 
follows:
   
   ```
   maxpool_output (1, 3, 17, 17)
   avgpool_output (1, 3, 9, 9)
   maxpool_output (1, 3, 17, 17)
   avgpool_output (1, 3, 10, 10)
   ```
   
   For the documents of 
[AveragePool](https://onnx.ai/onnx/operators/onnx__AveragePool.html), if  
ceil_mode = 1, the shape can be calculated by the following formula:
   ```
   output_spatial_shape[i] = ceil((input_spatial_shape[i] + pad_shape[i] - 
dilation[i] * (kernel_shape[i] - 1) - 1) / strides_spatial_shape[i] + 1)
   ```
   that is, ceil((17+1-1*(2-1)-1)/2 + 1) = 9, which indicates that TVM produces 
wrong shape of average_output.
   
   I also try to set ceil_mode = 0, the results are as follows:
   
   ```
   maxpool_output (1, 3, 17, 17)
   avgpool_output (1, 3, 9, 9)
   maxpool_output (1, 3, 17, 17)
   avgpool_output (1, 3, 9, 9)
   ```
   In this case, the results are right.
   
   ### Environment
   
   OS: Ubuntu 20.04
   TVM: 0.23.dev0 (f4e28d315)
   
   onnxruntime: 1.23.2
   
   ### Steps to reproduce
   
   This bug can be reproduced by the following code with the model in the 
attachment. 
   ```python
   from typing import Dict, List, Literal, Optional
   import sys
   import os
   
   import numpy as np
   import onnx
   import onnxruntime
   from onnx import ModelProto, TensorProto, helper
   
   import tvm
   import tvm.testing
   from tvm import relax
   from tvm.relax.frontend.onnx import from_onnx
   
   import argparse
   import pickle
   
   def test(
       model: ModelProto,
       inputs: Optional[Dict[str, np.ndarray]] = None,
       ir_version: int = 8,
       opset: int = 14,
   ) -> None:
       # Configure model format.
       if ir_version is not None:
           model.ir_version = ir_version
       if opset is not None:
           model.opset_import[0].version = opset
       
       with open("inputs.pkl", 'rb') as fp:
           inputs = pickle.load(fp)
       # Run the model through onnx to get the expected result.
       try:
           ort_session = onnxruntime.InferenceSession(
               model.SerializeToString(), providers=["CPUExecutionProvider"]
           )
           ort_output = ort_session.run([], inputs)
       except Exception as e:
           print(e)
           print("This model cannot be executed by onnxruntime!")
           sys.exit(1)
   
       print('maxpool_output', ort_output[0].shape)
       print('avgpool_output', ort_output[1].shape)
   
       tvm_model = from_onnx(model, opset=opset, keep_params_in_input=True)
       tvm_model = relax.transform.DecomposeOpsForInference()(tvm_model)
       tvm_model = relax.transform.LegalizeOps()(tvm_model)
   
       tvm_model, params = relax.frontend.detach_params(tvm_model)
       with tvm.transform.PassContext(opt_level=3):
           ex = tvm.compile(tvm_model, target="llvm")
           vm = relax.VirtualMachine(ex, tvm.cpu())
   
       input_list = [
           inputs[key.name_hint] for key in tvm_model["main"].params if 
key.name_hint in inputs
       ]
       if params:
           input_list += params["main"]
   
       # Run model and check outputs.
       vm.set_input("main", *input_list)
       vm.invoke_stateful("main")
       tvm_output = vm.get_outputs("main")
   
       print('maxpool_output', tvm_output[0].shape)
       print('avgpool_output', tvm_output[1].shape)
       
       
   if __name__ == "__main__":
       
       onnx_model = onnx.load("22.onnx")
       test(onnx_model)
   
   ```
   
   <!-- Failed to upload "testcase.zip" -->
   
   In the attachment, 11.onnx is the model with ceil_mode=1, 22.onnx is 
ceil_mode=0.
   ### Triage
   
   Please refer to the list of label tags 
[here](https://github.com/apache/tvm/wiki/Issue-Triage-Labels) to find the 
relevant tags and add them below in a bullet format (example below).
   
   * needs-triage
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to