builder_ = nvinfer1::createInferBuilder(*logger)
this function is very time-consuming and has been called more than once.
Does the this call every time there is a subgraph?
this function is nvidia api.
here is my code
model_path = "models/yolov5s.v5.onnx"
logging.basicConfig(level=logging.DEBUG)
onnx_model = onnx.load(model_path)
BATCH_SIZE = 1
input_shape = (BATCH_SIZE, 3, 640, 640)
input_name = "images"
dtype="float16"
shape_dict = {input_name: input_shape}
mod, params = relay.frontend.from_onnx(onnx_model, shape_dict,dtype=dtype)
mod = relay.transform.InferType()(mod)
mod = tensorrt.partition_for_tensorrt(mod)
with tvm.transform.PassContext(opt_level=3):
lib = relay.build(mod,target="cuda",params=params)
dev = tvm.cuda(0)
module_exec = graph_executor.GraphModule(lib["default"](dev))
x_data = np.random.uniform(-1, 1, input_shape).astype(dtype)
module_exec.set_input(input_name, x_data)
print(module_exec.benchmark(dev,number=1,repeat=1))
---
[Visit
Topic](https://discuss.tvm.apache.org/t/tvm-use-tensorrt-is-so-slowly/18472/1)
to respond.
You are receiving this because you enabled mailing list mode.
To unsubscribe from these emails, [click
here](https://discuss.tvm.apache.org/email/unsubscribe/57f55964d187bc4c73d7a27fbe110616470fa5e49a8079993e65f92741f2072e).