Thank you! Your explanation about TE tensors is very clear。
However,I think maybe those `T_reshape.op` may refer to different ones because I use several topi.reshape, and here's my code: def function(): A = te.placeholder((1, 3, 5, 5), name="A", dtype="float32") kernel = te.placeholder((5, 5), name="kernel", dtype="float32") max_val = 1e4 se_h, se_w = kernel.shape origin = [se_h // 2, se_w // 2] pad_e1 = [0, 0, origin[0], origin[1]] pad_e2 = [0, 0, se_h - origin[0] - 1, se_w - origin[1] - 1] border_value = max_val output = topi.nn.pad(A, pad_e1, pad_e2, pad_value=border_value) print(output.shape) neighborhood = te.compute((5, 5), lambda i0, i1: te.if_then_else(kernel[i0, i1] == 0, -max_val, 0), name="neighborhood") B, C, H, W = A.shape Hpad, Wpad = output.shape[-2:] reshape_kernel = neight2channels(kernel) reshape1 = topi.reshape(output, [B*C, 1, Hpad, Wpad]) conv1 = topi.nn.conv2d(reshape1, reshape_kernel, 1, 0, 1) out1 = topi.min(conv1, 1) reshape2 = topi.reshape(neighborhood, [1]) out2 = topi.subtract(out1, reshape2) out = topi.reshape(out1, [B, C, H, W]) return [A, kernel, out] def neight2channels(kernel): h, w = kernel.shape temp = te.compute((h*w, h*w), lambda i, j: te.if_then_else(i == j, 1, 0), name="temp") reshape_kernel = topi.reshape(temp, [h*w, 1, h, w]) return reshape_kernel And here is the printed schedule: > PadInput_i0, PadInput_i1, PadInput_i2, PadInput_i3 = tuple(PadInput.op.axis) + tuple(PadInput.op.reduce_axis) > T_reshape_ax0, T_reshape_ax1, T_reshape_ax2, T_reshape_ax3 = > tuple(T_reshape.op.axis) + tuple(T_reshape.op.reduce_axis) > pad_temp_i0, pad_temp_i1, pad_temp_i2, pad_temp_i3 = > tuple(pad_temp.op.axis) + tuple(pad_temp.op.reduce_axis) > compute_i, compute_j = tuple(compute.op.axis) + > tuple(compute.op.reduce_axis) > T_reshape_ax0, T_reshape_ax1, T_reshape_ax2, T_reshape_ax3 = > tuple(T_reshape.op.axis) + tuple(T_reshape.op.reduce_axis) > compute_nn, compute_ff, compute_yy, compute_xx, compute_rc, > compute_ry, compute_rx = tuple(compute.op.axis) + > tuple(compute.op.reduce_axis) > compute_red_ax0, compute_red_ax1, compute_red_ax2, compute_red_k1 = > tuple(compute_red.op.axis) + tuple(compute_red.op.reduce_axis) > T_reshape_ax0, T_reshape_ax1, T_reshape_ax2, T_reshape_ax3 = > tuple(T_reshape.op.axis) + tuple(T_reshape.op.reduce_axis) > compute_local, = s.cache_write([compute], "local") > compute_local_nn_c, compute_local_ff_c, compute_local_yy_c, > compute_local_xx_c, compute_local_rc, compute_local_ry, compute_local_rx = > tuple(compute_local.op.axis) + tuple(compute_local.op.reduce_axis) > compute_local_nn_c_o_i, compute_local_nn_c_i = > s[compute_local].split(compute_local_nn_c, factor=3) > compute_local_nn_c_o_o_i, compute_local_nn_c_o_i = > s[compute_local].split(compute_local_nn_c_o_i, factor=1) > compute_local_nn_c_o_o_o_i, compute_local_nn_c_o_o_i = > s[compute_local].split(compute_local_nn_c_o_o_i, factor=1) > compute_local_nn_c_o_o_o_o, compute_local_nn_c_o_o_o_i = > s[compute_local].split(compute_local_nn_c_o_o_o_i, factor=1) > compute_local_ff_c_o_i, compute_local_ff_c_i = > s[compute_local].split(compute_local_ff_c, factor=1) > compute_local_ff_c_o_o_i, compute_local_ff_c_o_i = > s[compute_local].split(compute_local_ff_c_o_i, factor=1) > compute_local_ff_c_o_o_o_i, compute_local_ff_c_o_o_i = > s[compute_local].split(compute_local_ff_c_o_o_i, factor=25) > compute_local_ff_c_o_o_o_o, compute_local_ff_c_o_o_o_i = > s[compute_local].split(compute_local_ff_c_o_o_o_i, factor=1) > compute_local_yy_c_o_i, compute_local_yy_c_i = > s[compute_local].split(compute_local_yy_c, factor=1) > compute_local_yy_c_o_o_i, compute_local_yy_c_o_i = > s[compute_local].split(compute_local_yy_c_o_i, factor=1) > compute_local_yy_c_o_o_o_i, compute_local_yy_c_o_o_i = > s[compute_local].split(compute_local_yy_c_o_o_i, factor=1) > compute_local_yy_c_o_o_o_o, compute_local_yy_c_o_o_o_i = > s[compute_local].split(compute_local_yy_c_o_o_o_i, factor=5) > compute_local_xx_c_o_i, compute_local_xx_c_i = > s[compute_local].split(compute_local_xx_c, factor=1) > compute_local_xx_c_o_o_i, compute_local_xx_c_o_i = > s[compute_local].split(compute_local_xx_c_o_i, factor=1) > compute_local_xx_c_o_o_o_i, compute_local_xx_c_o_o_i = > s[compute_local].split(compute_local_xx_c_o_o_i, factor=5) > compute_local_xx_c_o_o_o_o, compute_local_xx_c_o_o_o_i = > s[compute_local].split(compute_local_xx_c_o_o_o_i, factor=1) > compute_local_rc_o_i, compute_local_rc_i = > s[compute_local].split(compute_local_rc, factor=1) > compute_local_rc_o_o, compute_local_rc_o_i = > s[compute_local].split(compute_local_rc_o_i, factor=1) > compute_local_ry_o_i, compute_local_ry_i = > s[compute_local].split(compute_local_ry, factor=5) > compute_local_ry_o_o, compute_local_ry_o_i = > s[compute_local].split(compute_local_ry_o_i, factor=1) > compute_local_rx_o_i, compute_local_rx_i = > s[compute_local].split(compute_local_rx, factor=1) > compute_local_rx_o_o, compute_local_rx_o_i = > s[compute_local].split(compute_local_rx_o_i, factor=1) > s[compute_local].reorder(compute_local_nn_c_o_o_o_o, > compute_local_ff_c_o_o_o_o, compute_local_yy_c_o_o_o_o, > compute_local_xx_c_o_o_o_o, compute_local_nn_c_o_o_o_i, > compute_local_ff_c_o_o_o_i, compute_local_yy_c_o_o_o_i, > compute_local_xx_c_o_o_o_i, compute_local_nn_c_o_o_i, > compute_local_ff_c_o_o_i, compute_local_yy_c_o_o_i, compute_local_xx_c_o_o_i, > compute_local_rc_o_o, compute_local_ry_o_o, compute_local_rx_o_o, > compute_local_rc_o_i, compute_local_ry_o_i, compute_local_rx_o_i, > compute_local_nn_c_o_i, compute_local_ff_c_o_i, compute_local_yy_c_o_i, > compute_local_xx_c_o_i, compute_local_rc_i, compute_local_ry_i, > compute_local_rx_i, compute_local_nn_c_i, compute_local_ff_c_i, > compute_local_yy_c_i, compute_local_xx_c_i) > compute_nn_o_i, compute_nn_i = s[compute].split(compute_nn, factor=3) > compute_nn_o_o_i, compute_nn_o_i = s[compute].split(compute_nn_o_i, > factor=1) > compute_nn_o_o_o, compute_nn_o_o_i = > s[compute].split(compute_nn_o_o_i, factor=1) > compute_ff_o_i, compute_ff_i = s[compute].split(compute_ff, factor=1) > compute_ff_o_o_i, compute_ff_o_i = s[compute].split(compute_ff_o_i, > factor=25) > compute_ff_o_o_o, compute_ff_o_o_i = > s[compute].split(compute_ff_o_o_i, factor=1) > compute_yy_o_i, compute_yy_i = s[compute].split(compute_yy, factor=1) > compute_yy_o_o_i, compute_yy_o_i = s[compute].split(compute_yy_o_i, > factor=1) > compute_yy_o_o_o, compute_yy_o_o_i = > s[compute].split(compute_yy_o_o_i, factor=5) > compute_xx_o_i, compute_xx_i = s[compute].split(compute_xx, factor=1) > compute_xx_o_o_i, compute_xx_o_i = s[compute].split(compute_xx_o_i, > factor=5) > compute_xx_o_o_o, compute_xx_o_o_i = > s[compute].split(compute_xx_o_o_i, factor=1) > s[compute].reorder(compute_nn_o_o_o, compute_ff_o_o_o, > compute_yy_o_o_o, compute_xx_o_o_o, compute_nn_o_o_i, compute_ff_o_o_i, > compute_yy_o_o_i, compute_xx_o_o_i, compute_nn_o_i, compute_ff_o_i, > compute_yy_o_i, compute_xx_o_i, compute_nn_i, compute_ff_i, compute_yy_i, > compute_xx_i) > s[compute_local].compute_at(s[compute], compute_xx_o_i) > T_reshape_shared = s.cache_read(T_reshape, "shared", [compute_local]) > T_reshape_shared_ax0, T_reshape_shared_ax1, T_reshape_shared_ax2, > T_reshape_shared_ax3 = tuple(T_reshape_shared.op.axis) > s[T_reshape_shared].compute_at(s[compute_local], compute_local_rx_o_o) > s[T_reshape].compute_inline() > s[compute].compute_inline() > pad_temp_shared = s.cache_read(pad_temp, "shared", [compute_local]) > pad_temp_shared_ax0, pad_temp_shared_ax1, pad_temp_shared_ax2, > pad_temp_shared_ax3 = tuple(pad_temp_shared.op.axis) > s[pad_temp_shared].compute_at(s[compute_local], compute_local_rx_o_o) > s[pad_temp].compute_inline() > s[T_reshape].compute_inline() > s[PadInput].compute_inline() > T_reshape_ax0_ax1_fused_ax2_fused_ax3_fused = > s[T_reshape].fuse(T_reshape_ax0, T_reshape_ax1, T_reshape_ax2, T_reshape_ax3) > T_reshape_ax0_ax1_fused_ax2_fused_ax3_fused_o, > T_reshape_ax0_ax1_fused_ax2_fused_ax3_fused_i = > s[T_reshape].split(T_reshape_ax0_ax1_fused_ax2_fused_ax3_fused, factor=32) > s[T_reshape].bind(T_reshape_ax0_ax1_fused_ax2_fused_ax3_fused_o, > te.thread_axis("blockIdx.x")) > s[T_reshape].bind(T_reshape_ax0_ax1_fused_ax2_fused_ax3_fused_i, > te.thread_axis("threadIdx.x")) > compute_red_ax0_ax1_fused_ax2_fused = > s[compute_red].fuse(compute_red_ax0, compute_red_ax1, compute_red_ax2) > compute_red_ax0_ax1_fused_ax2_fused_o, > compute_red_ax0_ax1_fused_ax2_fused_i = > s[compute_red].split(compute_red_ax0_ax1_fused_ax2_fused, factor=64) > s[compute_red].bind(compute_red_ax0_ax1_fused_ax2_fused_o, > te.thread_axis("blockIdx.x")) > s[compute_red].bind(compute_red_ax0_ax1_fused_ax2_fused_i, > te.thread_axis("threadIdx.x")) > compute_nn_o_o_o_ff_o_o_o_fused_yy_o_o_o_fused_xx_o_o_o_fused = > s[compute].fuse(compute_nn_o_o_o, compute_ff_o_o_o, compute_yy_o_o_o, > compute_xx_o_o_o) > > s[compute].bind(compute_nn_o_o_o_ff_o_o_o_fused_yy_o_o_o_fused_xx_o_o_o_fused, > te.thread_axis("blockIdx.x")) > compute_nn_o_o_i_ff_o_o_i_fused_yy_o_o_i_fused_xx_o_o_i_fused = > s[compute].fuse(compute_nn_o_o_i, compute_ff_o_o_i, compute_yy_o_o_i, > compute_xx_o_o_i) > > s[compute].bind(compute_nn_o_o_i_ff_o_o_i_fused_yy_o_o_i_fused_xx_o_o_i_fused, > te.thread_axis("vthread")) > compute_nn_o_i_ff_o_i_fused_yy_o_i_fused_xx_o_i_fused = > s[compute].fuse(compute_nn_o_i, compute_ff_o_i, compute_yy_o_i, > compute_xx_o_i) > > s[compute].bind(compute_nn_o_i_ff_o_i_fused_yy_o_i_fused_xx_o_i_fused, > te.thread_axis("threadIdx.x")) > T_reshape_shared_ax0_ax1_fused_ax2_fused_ax3_fused = > s[T_reshape_shared].fuse(T_reshape_shared_ax0, T_reshape_shared_ax1, > T_reshape_shared_ax2, T_reshape_shared_ax3) > T_reshape_shared_ax0_ax1_fused_ax2_fused_ax3_fused_o, > T_reshape_shared_ax0_ax1_fused_ax2_fused_ax3_fused_i = > s[T_reshape_shared].split(T_reshape_shared_ax0_ax1_fused_ax2_fused_ax3_fused, > factor=1) > > s[T_reshape_shared].vectorize(T_reshape_shared_ax0_ax1_fused_ax2_fused_ax3_fused_i) > T_reshape_shared_ax0_ax1_fused_ax2_fused_ax3_fused_o_o, > T_reshape_shared_ax0_ax1_fused_ax2_fused_ax3_fused_o_i = > s[T_reshape_shared].split(T_reshape_shared_ax0_ax1_fused_ax2_fused_ax3_fused_o, > factor=125) > > s[T_reshape_shared].bind(T_reshape_shared_ax0_ax1_fused_ax2_fused_ax3_fused_o_i, > te.thread_axis("threadIdx.x")) > pad_temp_shared_ax0_ax1_fused_ax2_fused_ax3_fused = > s[pad_temp_shared].fuse(pad_temp_shared_ax0, pad_temp_shared_ax1, > pad_temp_shared_ax2, pad_temp_shared_ax3) > pad_temp_shared_ax0_ax1_fused_ax2_fused_ax3_fused_o, > pad_temp_shared_ax0_ax1_fused_ax2_fused_ax3_fused_i = > s[pad_temp_shared].split(pad_temp_shared_ax0_ax1_fused_ax2_fused_ax3_fused, > factor=1) > > s[pad_temp_shared].vectorize(pad_temp_shared_ax0_ax1_fused_ax2_fused_ax3_fused_i) > pad_temp_shared_ax0_ax1_fused_ax2_fused_ax3_fused_o_o, > pad_temp_shared_ax0_ax1_fused_ax2_fused_ax3_fused_o_i = > s[pad_temp_shared].split(pad_temp_shared_ax0_ax1_fused_ax2_fused_ax3_fused_o, > factor=125) > > s[pad_temp_shared].bind(pad_temp_shared_ax0_ax1_fused_ax2_fused_ax3_fused_o_i, > te.thread_axis("threadIdx.x")) > s[compute_local].pragma(compute_local_nn_c_o_o_o_o, > "auto_unroll_max_step", 512) > s[compute_local].pragma(compute_local_nn_c_o_o_o_o, > "unroll_explicit", True) > s[compute_red].pragma(compute_red_ax0_ax1_fused_ax2_fused_o, > "auto_unroll_max_step", 64) > s[compute_red].pragma(compute_red_ax0_ax1_fused_ax2_fused_o, > "unroll_explicit", True) So,since the fusion,how can I use the printed schedule again? --- [Visit Topic](https://discuss.tvm.apache.org/t/print-auto-schedule-python-schedule-with-topi-op/11363/3) to respond. You are receiving this because you enabled mailing list mode. To unsubscribe from these emails, [click here](https://discuss.tvm.apache.org/email/unsubscribe/1629551b4f84d2714664dc69d00871010d688c9a202cbe8913b245d137bbdc40).