@jwfromm Thanks for your support! I use the model architecture customized from the Maskrcnn model <br> Here is my tuning script: ```python import tvm from tvm import relay, auto_scheduler from tvm.runtime.vm import VirtualMachine
TARGET = tvm.target.Target("llvm -mcpu=broadwell") log_file = "card_extraction-autoschedule.json" dummy_input = torch.randn(1, 3, 800, 800,device='cpu', requires_grad=True) model = torch.jit.trace(model, dummy_input) mod, params = relay.frontend.from_pytorch(model, input_infos=[('input0', dummy_input.shape)]) print("Extract tasks...") tasks, task_weights = auto_scheduler.extract_tasks(mod["main"], params, TARGET) for idx, task in enumerate(tasks): print("========== Task %d (workload key: %s) ==========" % (idx, task.workload_key)) print(task.compute_dag) def run_tuning(): print("Begin tuning...") tuner = auto_scheduler.TaskScheduler(tasks, task_weights) tune_option = auto_scheduler.TuningOptions( num_measure_trials=20000, runner=auto_scheduler.LocalRunner(repeat=10, enable_cpu_cache_flush=True), measure_callbacks=[auto_scheduler.RecordToFile(log_file)], ) tuner.tune(tune_option) run_tuning() # I apply log file here to compiling model with auto_scheduler.ApplyHistoryBest(log_file): with tvm.transform.PassContext(opt_level=3, disabled_pass=["FoldScaleAxis"], config={"relay.backend.use_auto_scheduler": True}): vm_exec = relay.vm.compile(mod, target=TARGET, params=params) dev = tvm.cpu() vm = VirtualMachine(vm_exec, dev) start_t = time.time() vm.set_input("main", **{"input0": sample.cpu().numpy()}) tvm_res = vm.run() print(tvm_res[0].numpy().tolist()) print("Inference time of model after tuning: {:0.4f}".format(time.time() - start_t)) ``` --- [Visit Topic](https://discuss.tvm.apache.org/t/how-to-apply-best-history-after-auto-scheduler-for-relay-vm-compile/10908/5) to respond. You are receiving this because you enabled mailing list mode. To unsubscribe from these emails, [click here](https://discuss.tvm.apache.org/email/unsubscribe/bd7b9f2507ea10e6274fc42249ddec529834a6add0a3f518376945e1cfee3573).