I am getting poor performance (in terms of schedule efficiency) of 
autoscheduler for simple consecutive subtraction kernel:
```
 in = te.placeholder((N, H, W), dtype='float')
 out = te.compute((N-1, H, W),  lambda n, y, x: in[n+1, y, x] - in[n, y, x])
 return [in, out]
```

Example (tir) of schedule "found" for particular input sizes:
```
primfn(image_in_1: handle, subtracted_1: handle) -> ()
  attr = {"from_legacy_te_schedule": True, "global_symbol": "main", 
"tir.noalias": True}
  buffers = {subtracted: Buffer(subtracted_2: Pointer(float32), float32, [5, 
2160, 3840], []),
             image_in: Buffer(image_in_2: Pointer(float32), float32, [6, 2160, 
3840], [])}
  buffer_map = {image_in_1: image_in, subtracted_1: subtracted} {
  attr [IterVar(blockIdx.x: int32, (nullptr), "ThreadIndex", "blockIdx.x")] 
"thread_extent" = 648000;
  attr [IterVar(threadIdx.x: int32, (nullptr), "ThreadIndex", "threadIdx.x")] 
"thread_extent" = 64;
  subtracted_2[((blockIdx.x*64) + threadIdx.x)] = 
((float32*)image_in_2[(((blockIdx.x*64) + threadIdx.x) + 8294400)] - 
(float32*)image_in_2[((blockIdx.x*64) + threadIdx.x)])
}
```

Cuda kernel for this schedule runs on my gpu for 1250us, while simple handmade 
kernel runs for 950us. Is that expected, or any changes in tuning 
options/operator "phrasing" can be made to gain better performance?

tvm commit 10fca9c





---
[Visit 
Topic](https://discuss.tvm.apache.org/t/autoscheduler-cuda-poor-perfomance-for-subtraction-kernel/10869/1)
 to respond.

You are receiving this because you enabled mailing list mode.

To unsubscribe from these emails, [click 
here](https://discuss.tvm.apache.org/email/unsubscribe/fcb886dab61bcc6ecf9f1f617164604b62737c9e15eb6710939687d7b861efc7).

Reply via email to