According to TLCBench, on CNNs like resnet50 and mobilenet, models tuned by 
auto-scheduler tend to be faster than AutoTVM. With the same setting, I've 
tested tuning Yolo v3 on Tesla T4 and the result is as follows. 

| |  AutoTVM  |  Auto-Scheduler (nchw)  |  Auto-Scheduler (nhwc)  |
|---- | ---- | ---- | ---- |
|fp32 |  17.23 ms  |  21.24 ms  | 18.67 ms |
|int8 |  8.54 ms  |  15.85 ms  | 15.92ms |

Is there any possible reason or any missing important setting for int8 with 
auto-scheduler? Comparing debug_runtime results shows that for almost all 
layers conv2d AutoTVM is superior. 
![autotvm_int8_vs_autoscheduler_int8|600x371](upload://uNibkK9kwBo9RFi697H7jdTP42B.png)
 


### Experiment setting
 - Common
   - model: from darknet (input: 416x416)
   - opt_level: 3
   - batch_size: 1
 - AutoTVM
   - n_trial: 2000
   - layout: nchw
   - tuner: xgb
   - early_stopping: 600
   - number=20
   - repeat=3
   - timeout=4
   - min_repeat_ms=150
 - AutoScheduler
   - n_trial: 30000 (28 tasks)
   - layout: nhwc
   - repeat: 1
   - min_repeat_ms: 200
   - time_out: 20
   - early_stopping: 2000





---
[Visit 
Topic](https://discuss.tvm.apache.org/t/auto-scheduler-seems-slower-on-int8/9585/1)
 to respond.

You are receiving this because you enabled mailing list mode.

To unsubscribe from these emails, [click 
here](https://discuss.tvm.apache.org/email/unsubscribe/0498a6a4bf753d3da765036ae25a77ca0b9aace6880335ffe7820b7476ff19b4).

Reply via email to