from tvm import relay from tvm.relay import testing import numpy as np from infrastructure import get_ref_result
batch_size = 1 num_class = 1000 image_shape = (3, 224, 224) data_shape = (batch_size,) + image_shape out_shape = (batch_size, num_class) dtype="float32" mod, params = relay.testing.mobilenet.get_workload( batch_size=batch_size, num_classes=num_class, image_shape=image_shape, layout='NCHW' ) #print(mod.astext(show_meta_data=False)) data = np.random.uniform(size=data_shape).astype(dtype) print(data) ref_out = get_ref_result(data, mod, params, out_shape, dtype) print(ref_out) get_ref_result looks like: def get_ref_result(data, mod, params, out_shape, dtype): target = "llvm" with tvm.transform.PassContext(opt_level=3, disabled_pass=["AlterOpLayout"]): lib = relay.build(mod, target, params=params) cpu_mod = graph_runtime.GraphModule(lib["default"](tvm.cpu())) cpu_mod.set_input("data", data) cpu_mod.run() cpu_out = cpu_mod.get_output(0, tvm.nd.empty(out_shape, dtype)) return cpu_out output: ================================================================ [[[[0.48127168 0.2018001 0.71724653 ... 0.0441279 0.57116777 0.1731153 ] [0.40417442 0.3016946 0.74636394 ... 0.3417648 0.718218 0.28890228] [0.7683302 0.17131594 0.9016031 ... 0.5153679 0.74072677 0.03374053] ... [0.6947896 0.6551721 0.85114497 ... 0.35421443 0.20508686 0.6471268 ] [0.09923462 0.61146086 0.08773897 ... 0.53768474 0.31748652 0.64678025] [0.31008628 0.56266195 0.83621436 ... 0.9968801 0.4973068 0.09383171]] [[0.73113763 0.17166294 0.5789204 ... 0.03240918 0.0247721 0.89045954] [0.46058905 0.3739123 0.56078994 ... 0.38859197 0.36561185 0.7287658 ] [0.8079502 0.39894798 0.6348208 ... 0.56089103 0.58005774 0.52373666] ... [0.4517257 0.8520253 0.40640992 ... 0.1651029 0.22171977 0.35451823] [0.9394899 0.7759206 0.5117806 ... 0.99209446 0.24618751 0.57113916] [0.6102327 0.08231816 0.7101693 ... 0.77034265 0.9671634 0.5752965 ]] [[0.3101213 0.192366 0.22534423 ... 0.828487 0.59424293 0.21207647] [0.8794648 0.09954574 0.30758655 ... 0.051931 0.03809953 0.3480195 ] [0.81616604 0.92345166 0.36221072 ... 0.93277586 0.79536366 0.42082992] ... [0.621181 0.4233806 0.83933717 ... 0.44883785 0.4910011 0.3370444 ] [0.9489613 0.7982109 0.709624 ... 0.6371652 0.5758706 0.6982647 ] [0.36476108 0.2929088 0.49834147 ... 0.87037426 0.40084326 0.3614452 ]]]] Cannot find config for target=llvm -keys=cpu, workload=('dense_nopack.x86', ('TENSOR', (1, 1024), 'float32'), ('TENSOR', (1000, 1024), 'float32'), None, 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=llvm -keys=cpu, workload=('conv2d_NCHWc.x86', ('TENSOR', (1, 1024, 7, 7), 'float32'), ('TENSOR', (1024, 1024, 1, 1), 'float32'), (1, 1), (0, 0, 0, 0), (1, 1), 'NCHW', 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=llvm -keys=cpu, workload=('depthwise_conv2d_NCHWc.x86', ('TENSOR', (1, 1024, 7, 7), 'float32'), ('TENSOR', (1024, 1, 3, 3), 'float32'), (1, 1), (1, 1, 1, 1), (1, 1), 'NCHW', 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=llvm -keys=cpu, workload=('conv2d_NCHWc.x86', ('TENSOR', (1, 512, 7, 7), 'float32'), ('TENSOR', (1024, 512, 1, 1), 'float32'), (1, 1), (0, 0, 0, 0), (1, 1), 'NCHW', 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=llvm -keys=cpu, workload=('depthwise_conv2d_NCHWc.x86', ('TENSOR', (1, 512, 14, 14), 'float32'), ('TENSOR', (512, 1, 3, 3), 'float32'), (2, 2), (1, 1, 1, 1), (1, 1), 'NCHW', 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=llvm -keys=cpu, workload=('conv2d_NCHWc.x86', ('TENSOR', (1, 512, 14, 14), 'float32'), ('TENSOR', (512, 512, 1, 1), 'float32'), (1, 1), (0, 0, 0, 0), (1, 1), 'NCHW', 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=llvm -keys=cpu, workload=('depthwise_conv2d_NCHWc.x86', ('TENSOR', (1, 512, 14, 14), 'float32'), ('TENSOR', (512, 1, 3, 3), 'float32'), (1, 1), (1, 1, 1, 1), (1, 1), 'NCHW', 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=llvm -keys=cpu, workload=('conv2d_NCHWc.x86', ('TENSOR', (1, 256, 14, 14), 'float32'), ('TENSOR', (512, 256, 1, 1), 'float32'), (1, 1), (0, 0, 0, 0), (1, 1), 'NCHW', 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=llvm -keys=cpu, workload=('depthwise_conv2d_NCHWc.x86', ('TENSOR', (1, 256, 28, 28), 'float32'), ('TENSOR', (256, 1, 3, 3), 'float32'), (2, 2), (1, 1, 1, 1), (1, 1), 'NCHW', 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=llvm -keys=cpu, workload=('conv2d_NCHWc.x86', ('TENSOR', (1, 256, 28, 28), 'float32'), ('TENSOR', (256, 256, 1, 1), 'float32'), (1, 1), (0, 0, 0, 0), (1, 1), 'NCHW', 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=llvm -keys=cpu, workload=('depthwise_conv2d_NCHWc.x86', ('TENSOR', (1, 256, 28, 28), 'float32'), ('TENSOR', (256, 1, 3, 3), 'float32'), (1, 1), (1, 1, 1, 1), (1, 1), 'NCHW', 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=llvm -keys=cpu, workload=('conv2d_NCHWc.x86', ('TENSOR', (1, 128, 28, 28), 'float32'), ('TENSOR', (256, 128, 1, 1), 'float32'), (1, 1), (0, 0, 0, 0), (1, 1), 'NCHW', 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=llvm -keys=cpu, workload=('depthwise_conv2d_NCHWc.x86', ('TENSOR', (1, 128, 56, 56), 'float32'), ('TENSOR', (128, 1, 3, 3), 'float32'), (2, 2), (1, 1, 1, 1), (1, 1), 'NCHW', 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=llvm -keys=cpu, workload=('conv2d_NCHWc.x86', ('TENSOR', (1, 128, 56, 56), 'float32'), ('TENSOR', (128, 128, 1, 1), 'float32'), (1, 1), (0, 0, 0, 0), (1, 1), 'NCHW', 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=llvm -keys=cpu, workload=('depthwise_conv2d_NCHWc.x86', ('TENSOR', (1, 128, 56, 56), 'float32'), ('TENSOR', (128, 1, 3, 3), 'float32'), (1, 1), (1, 1, 1, 1), (1, 1), 'NCHW', 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=llvm -keys=cpu, workload=('conv2d_NCHWc.x86', ('TENSOR', (1, 64, 56, 56), 'float32'), ('TENSOR', (128, 64, 1, 1), 'float32'), (1, 1), (0, 0, 0, 0), (1, 1), 'NCHW', 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=llvm -keys=cpu, workload=('depthwise_conv2d_NCHWc.x86', ('TENSOR', (1, 64, 112, 112), 'float32'), ('TENSOR', (64, 1, 3, 3), 'float32'), (2, 2), (1, 1, 1, 1), (1, 1), 'NCHW', 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=llvm -keys=cpu, workload=('conv2d_NCHWc.x86', ('TENSOR', (1, 32, 112, 112), 'float32'), ('TENSOR', (64, 32, 1, 1), 'float32'), (1, 1), (0, 0, 0, 0), (1, 1), 'NCHW', 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=llvm -keys=cpu, workload=('depthwise_conv2d_NCHWc.x86', ('TENSOR', (1, 32, 112, 112), 'float32'), ('TENSOR', (32, 1, 3, 3), 'float32'), (1, 1), (1, 1, 1, 1), (1, 1), 'NCHW', 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=llvm -keys=cpu, workload=('conv2d_NCHWc.x86', ('TENSOR', (1, 3, 224, 224), 'float32'), ('TENSOR', (32, 3, 3, 3), 'float32'), (2, 2), (1, 1, 1, 1), (1, 1), 'NCHW', 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression. [[0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001]] --- [Visit Topic](https://discuss.tvm.apache.org/t/why-the-mobilenet-workload-result-is-all-0-001/8420/1) to respond. You are receiving this because you enabled mailing list mode. To unsubscribe from these emails, [click here](https://discuss.tvm.apache.org/email/unsubscribe/b47f7234fdfe9346d9242f3f911cb6bf93d64344d7625b75f239eb035e325a54).