I have trained LSTM network and want to do a performance comparison between Keras and TVM on my personal laptop CPU. For that, I am using 10 values to pass through the network directly.
data shape is [10,1,6] ###################################################################### #model is loaded from the .h5 file data = test_X[0:10,:,:] shape_dict = {"lstm_1_input": data.shape} mod, params = relay.frontend.from_keras(model, shape_dict) # compile the model target = "llvm" ctx = tvm.cpu(0) with tvm.transform.PassContext(opt_level=3): executor = relay.build_module.create_executor("graph", mod, ctx, target) print("Test Data Shape = ",data.shape) dtype = "float32" data2 = data.astype(dtype) tvm_out = executor.evaluate()(tvm.nd.array(data2), **params) print(tvm_out) top1_tvm = np.argmax(tvm_out.asnumpy()[0]) ###################################################################### For the above code, I am getting below error Check failed: *axis_ptr == 1 (10 vs. 1) : cannot squeeze axis with dimension not equal to 1. Its basically feeding the TVM multiple inputs simultaneously. --- [Visit Topic](https://discuss.tvm.apache.org/t/cannot-squeeze-axis-with-dimension-not-equal-to-1/8370/1) to respond. You are receiving this because you enabled mailing list mode. To unsubscribe from these emails, [click here](https://discuss.tvm.apache.org/email/unsubscribe/5619f4c832146e46a7b89726fa8ad6f2bfd7dfc91f9a3c28f3d4cebae9725601).