I tried to use tvm to generate tensor core code and I followed https://tvm.apache.org/docs/tutorials/optimize/opt_matmul_auto_tensorcore.html
I use the latest version of TVM on NVIDIA V100 with CUDA 10.1 the output kernel code doesn't use tensor core wmma. I have changed N M L and layout. The output is followed. ``` Best config: [('bx', 2), ('by', 64), ('step_k', 4), ('v', 8)],None,105 Finish loading 1376 records primfn(A_1: handle, B_1: handle, compute_1: handle) -> () attr = {"global_symbol": "main", "tir.noalias": True} buffers = {compute: Buffer(compute_2: handle, float32, [4096, 4096], []), B: Buffer(B_2: handle, float16, [4096, 4096], []), A: Buffer(A_2: handle, float16, [4096, 4096], [])} buffer_map = {A_1: A, B_1: B, compute_1: compute} { attr [IterVar(blockIdx.y: int32, (nullptr), "ThreadIndex", "blockIdx.y")] "thread_extent" = 64; attr [compute.local: handle] "storage_scope" = "local"; allocate(compute.local, float32, [8]); attr [A.shared: handle] "storage_scope" = "shared"; allocate(A.shared, float16, [4608]); attr [B.shared: handle] "storage_scope" = "shared"; allocate(B.shared, float16, [1024]); attr [A.shared.local: handle] "storage_scope" = "local"; allocate(A.shared.local, float16, [16]); attr [B.shared.local: handle] "storage_scope" = "local"; allocate(B.shared.local, float16, [128]); attr [IterVar(blockIdx.x: int32, (nullptr), "ThreadIndex", "blockIdx.x")] "thread_extent" = 256; attr [IterVar(threadIdx.z: int32, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1; attr [IterVar(threadIdx.y: int32, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 64; attr [IterVar(threadIdx.x: int32, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 2 { for (j.c.init: int32, 0, 8) { compute.local[j.c.init] = 0f32 } attr [IterVar(k.outer: int32, (nullptr), "CommReduce", "")] "pragma_tensor_core" = 1; for (k.outer, 0, 64) { for (ax0.ax1.outer.fused.outer: int32, 0, 4) { attr [IterVar(threadIdx.y_1: int32, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 64; attr [IterVar(threadIdx.z_1: int32, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1; attr [IterVar(threadIdx.x_1: int32, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 2; A.shared[ramp(((((ax0.ax1.outer.fused.outer*1152) + (floordiv(threadIdx.y_1, 4)*72)) + (floormod(threadIdx.y_1, 4)*16)) + (threadIdx.x_1*8)), 1, 8)] = (float16x8*)A_2[ramp(((((((blockIdx.y*262144) + (ax0.ax1.outer.fused.outer*65536)) + (floordiv(threadIdx.y_1, 4)*4096)) + (k.outer*64)) + (floormod(threadIdx.y_1, 4)*16)) + (threadIdx.x_1*8)), 1, 8)]) } attr [IterVar(threadIdx.y_2: int32, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 64; attr [IterVar(threadIdx.z_2: int32, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1; attr [IterVar(threadIdx.x_2: int32, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 2; B.shared[ramp(((threadIdx.y_2*16) + (threadIdx.x_2*8)), 1, 8)] = (float16x8*)B_2[ramp((((((blockIdx.x*65536) + (floordiv(threadIdx.y_2, 4)*4096)) + (k.outer*64)) + (floormod(threadIdx.y_2, 4)*16)) + (threadIdx.x_2*8)), 1, 8)]) for (k.inner.outer: int32, 0, 4) { for (ax1: int32, 0, 16) { A.shared.local[ax1] = (float16*)A.shared[(((threadIdx.y*72) + (k.inner.outer*16)) + ax1)]) } for (ax0: int32, 0, 8) { for (ax1_1: int32, 0, 16) { B.shared.local[((ax0*16) + ax1_1)] = (float16*)B.shared[((((threadIdx.x*512) + (ax0*64)) + (k.inner.outer*16)) + ax1_1)]) } } for (k.inner.inner: int32, 0, 16) { for (j.c: int32, 0, 8) { compute.local[j.c] = ((float32*)compute.local[j.c]) + (cast(float32, (float16*)A.shared.local[k.inner.inner]))*cast(float32, (float16*)B.shared.local[((j.c*16) + k.inner.inner)])))) } } } } for (j.inner.inner.inner: int32, 0, 8) { compute_2[(((((blockIdx.y*262144) + (threadIdx.y*4096)) + (blockIdx.x*16)) + (threadIdx.x*8)) + j.inner.inner.inner)] = (float32*)compute.local[j.inner.inner.inner]) } } } // meta data omitted. you can use show_meta_data=True to include meta data #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) #include <cuda_fp16.h> __device__ half max(half a, half b) { return __hgt(__half(a), __half(b)) ? a : b; } __device__ half min(half a, half b) { return __hlt(__half(a), __half(b)) ? a : b; } #else typedef unsigned short uint16_t; typedef unsigned char uint8_t; typedef signed char int8_t; typedef int int32_t; typedef unsigned long long uint64_t; typedef unsigned int uint32_t; #define TVM_FORCE_INLINE inline __attribute__((always_inline)) #define TVM_XINLINE TVM_FORCE_INLINE __device__ __host__ #define TVM_ALIGNED(x) __attribute__ ((aligned(x))) #define TVM_HALF_OPERATOR(RTYPE, OP) \ TVM_XINLINE RTYPE operator OP (half a, half b) { \ return RTYPE(float(a) OP float(b)); \ } \ template<typename T> \ TVM_XINLINE RTYPE operator OP (half a, T b) { \ return RTYPE(float(a) OP float(b)); \ } \ template<typename T> \ TVM_XINLINE RTYPE operator OP (T a, half b) { \ return RTYPE(float(a) OP float(b)); \ } #define TVM_HALF_ASSIGNOP(AOP, OP) \ template<typename T> \ TVM_XINLINE half operator AOP (const T& a) { \ return *this = half(float(*this) OP float(a)); \ } \ template<typename T> \ TVM_XINLINE half operator AOP (const volatile T& a) volatile { \ return *this = half(float(*this) OP float(a)); \ } class TVM_ALIGNED(2) half { public: uint16_t half_; static TVM_XINLINE half Binary(uint16_t value) { half res; res.half_ = value; return res; } TVM_XINLINE half() {} TVM_XINLINE half(const float& value) { constructor(value); } TVM_XINLINE explicit half(const double& value) { constructor(value); } TVM_XINLINE explicit half(const int8_t& value) { constructor(value); } TVM_XINLINE explicit half(const uint8_t& value) { constructor(value); } TVM_XINLINE explicit half(const int32_t& value) { constructor(value); } TVM_XINLINE explicit half(const uint32_t& value) { constructor(value); } TVM_XINLINE explicit half(const long long& value) { constructor(value); } TVM_XINLINE explicit half(const uint64_t& value) { constructor(value); } TVM_XINLINE operator float() const { \ return float(half2float(half_)); \ } \ TVM_XINLINE operator float() const volatile { \ return float(half2float(half_)); \ } TVM_HALF_ASSIGNOP(+=, +) TVM_HALF_ASSIGNOP(-=, -) TVM_HALF_ASSIGNOP(*=, *) TVM_HALF_ASSIGNOP(/=, /) TVM_XINLINE half operator+() { return *this; } TVM_XINLINE half operator-() { return half(-float(*this)); } TVM_XINLINE half operator=(const half& a) { half_ = a.half_; return a; } template<typename T> TVM_XINLINE half operator=(const T& a) { return *this = half(a); } TVM_XINLINE half operator=(const half& a) volatile { half_ = a.half_; return a; } template<typename T> TVM_XINLINE half operator=(const T& a) volatile { return *this = half(a); } private: union Bits { float f; int32_t si; uint32_t ui; }; static int const fp16FractionBits = 10; static int const fp32FractionBits = 23; static int32_t const fp32FractionMask = ~(~0u << fp32FractionBits); // == 0x7fffff static int32_t const fp32HiddenBit = 1 << fp32FractionBits; // == 0x800000 static int const shift = fp32FractionBits - fp16FractionBits; // == 13 static int const shiftSign = 16; static int32_t const expAdjust = 127 - 15; // exp32-127 = exp16-15, so exp16 = exp32 - (127-15) static int32_t const infN = 0x7F800000; // flt32 infinity static int32_t const maxN = 0x477FFFFF; // max flt32 that's a flt16 normal after >> by shift static int32_t const minN = 0x38800000; // min flt16 normal as a flt32 static int32_t const maxZ = 0x33000000; // max fp32 number that's still rounded to zero in fp16 static int32_t const signN = 0x80000000; // flt32 sign bit static int32_t const infC = infN >> shift; static int32_t const nanN = (infC + 1) << shift; // minimum flt16 nan as a flt32 static int32_t const maxC = maxN >> shift; static int32_t const minC = minN >> shift; static int32_t const signC = signN >> shiftSign; // flt16 sign bit static int32_t const mulN = 0x52000000; // (1 << 23) / minN static int32_t const mulC = 0x33800000; // minN / (1 << (23 - shift)) static int32_t const subC = 0x003FF; // max flt32 subnormal down shifted static int32_t const norC = 0x00400; // min flt32 normal down shifted static int32_t const maxD = infC - maxC - 1; static int32_t const minD = minC - subC - 1; TVM_XINLINE uint16_t float2half(const float& value) const { Bits v; v.f = value; uint32_t sign = v.si & signN; // grab sign bit v.si ^= sign; // clear sign bit from v sign >>= shiftSign; // logical shift sign to fp16 position if (v.si <= maxZ) { // Handle eventual zeros here to ensure // vshift will not exceed 32 below. v.ui = 0; } else if (v.si < minN) { // Handle denorms uint32_t exp32 = v.ui >> fp32FractionBits; int32_t exp16 = exp32 - expAdjust; // If exp16 == 0 (just into the denorm range), then significant should be shifted right 1. // Smaller (so negative) exp16 values should result in greater right shifts. uint32_t vshift = 1 - exp16; uint32_t significand = fp32HiddenBit | (v.ui & fp32FractionMask); v.ui = significand >> vshift; v.ui += (v.ui & 0x3fff) != 0x1000 || (significand & 0x7ff) ? 0x1000 : 0; } else if (v.si <= maxN) { // Handle norms v.ui += (v.ui & 0x3fff) != 0x1000 ? 0x1000 : 0; v.ui -= expAdjust << fp32FractionBits; } else if (v.si <= infN) { v.si = infN; } else if (v.si < nanN) { v.si = nanN; } v.ui >>= shift; return sign | (v.ui & 0x7fff); } // Same as above routine, except for addition of volatile keyword TVM_XINLINE uint16_t float2half( const volatile float& value) const volatile { Bits v; v.f = value; uint32_t sign = v.si & signN; // grab sign bit v.si ^= sign; // clear sign bit from v sign >>= shiftSign; // logical shift sign to fp16 position if (v.si <= maxZ) { // Handle eventual zeros here to ensure // vshift will not exceed 32 below. v.ui = 0; } else if (v.si < minN) { // Handle denorms uint32_t exp32 = v.ui >> fp32FractionBits; int32_t exp16 = exp32 - expAdjust; // If exp16 == 0 (just into the denorm range), then significant should be shifted right 1. // Smaller (so negative) exp16 values should result in greater right shifts. uint32_t vshift = 1 - exp16; uint32_t significand = fp32HiddenBit | (v.ui & fp32FractionMask); v.ui = significand >> vshift; v.ui += (v.ui & 0x3fff) != 0x1000 || (significand & 0x7ff) ? 0x1000 : 0; } else if (v.si <= maxN) { // Handle norms v.ui += (v.ui & 0x3fff) != 0x1000 ? 0x1000 : 0; v.ui -= expAdjust << fp32FractionBits; } else if (v.si <= infN) { v.si = infN; } else if (v.si < nanN) { v.si = nanN; } v.ui >>= shift; return sign | (v.ui & 0x7fff); } TVM_XINLINE float half2float(const uint16_t& value) const { Bits v; v.ui = value; int32_t sign = v.si & signC; v.si ^= sign; sign <<= shiftSign; v.si ^= ((v.si + minD) ^ v.si) & -(v.si > subC); v.si ^= ((v.si + maxD) ^ v.si) & -(v.si > maxC); Bits s; s.si = mulC; s.f *= v.si; int32_t mask = -(norC > v.si); v.si <<= shift; v.si ^= (s.si ^ v.si) & mask; v.si |= sign; return v.f; } TVM_XINLINE float half2float( const volatile uint16_t& value) const volatile { Bits v; v.ui = value; int32_t sign = v.si & signC; v.si ^= sign; sign <<= shiftSign; v.si ^= ((v.si + minD) ^ v.si) & -(v.si > subC); v.si ^= ((v.si + maxD) ^ v.si) & -(v.si > maxC); Bits s; s.si = mulC; s.f *= v.si; int32_t mask = -(norC > v.si); v.si <<= shift; v.si ^= (s.si ^ v.si) & mask; v.si |= sign; return v.f; } template<typename T> TVM_XINLINE void constructor(const T& value) { half_ = float2half(float(value)); } }; TVM_HALF_OPERATOR(half, +) TVM_HALF_OPERATOR(half, -) TVM_HALF_OPERATOR(half, *) TVM_HALF_OPERATOR(half, /) TVM_HALF_OPERATOR(bool, >) TVM_HALF_OPERATOR(bool, <) TVM_HALF_OPERATOR(bool, >=) TVM_HALF_OPERATOR(bool, <=) TVM_XINLINE half __float2half_rn(const float a) { return half(a); } #endif // Pack two half values. static inline __device__ __host__ unsigned __pack_half2(const half x, const half y) { unsigned v0 = *((unsigned short *)&x); unsigned v1 = *((unsigned short *)&y); return (v1 << 16) | v0; } extern "C" __global__ void default_function_kernel0(void* __restrict__ A, void* __restrict__ B, void* __restrict__ compute) { float compute_local[8]; __shared__ half A_shared[4608]; __shared__ half B_shared[1024]; half A_shared_local[16]; half B_shared_local[128]; for (int j_c_init = 0; j_c_init < 8; ++j_c_init) { compute_local[(j_c_init)] = 0.000000e+00f; } for (int k_outer = 0; k_outer < 64; ++k_outer) { __syncthreads(); for (int ax0_ax1_outer_fused_outer = 0; ax0_ax1_outer_fused_outer < 4; ++ax0_ax1_outer_fused_outer) { ((uint4*)(A_shared + (((((ax0_ax1_outer_fused_outer * 1152) + ((((int)threadIdx.y) >> 2) * 72)) + ((((int)threadIdx.y) & 3) * 16)) + (((int)threadIdx.x) * 8)))))[0] = ((uint4*)((half*)A + (((((((((int)blockIdx.y) * 262144) + (ax0_ax1_outer_fused_outer * 65536)) + ((((int)threadIdx.y) >> 2) * 4096)) + (k_outer * 64)) + ((((int)threadIdx.y) & 3) * 16)) + (((int)threadIdx.x) * 8)))))[0]; } ((uint4*)(B_shared + (((((int)threadIdx.y) * 16) + (((int)threadIdx.x) * 8)))))[0] = ((uint4*)((half*)B + ((((((((int)blockIdx.x) * 65536) + ((((int)threadIdx.y) >> 2) * 4096)) + (k_outer * 64)) + ((((int)threadIdx.y) & 3) * 16)) + (((int)threadIdx.x) * 8)))))[0]; __syncthreads(); for (int k_inner_outer = 0; k_inner_outer < 4; ++k_inner_outer) { for (int ax1 = 0; ax1 < 16; ++ax1) { A_shared_local[(ax1)] = A_shared[((((((int)threadIdx.y) * 72) + (k_inner_outer * 16)) + ax1))]; } for (int ax0 = 0; ax0 < 8; ++ax0) { for (int ax11 = 0; ax11 < 16; ++ax11) { B_shared_local[(((ax0 * 16) + ax11))] = B_shared[(((((((int)threadIdx.x) * 512) + (ax0 * 64)) + (k_inner_outer * 16)) + ax11))]; } } for (int k_inner_inner = 0; k_inner_inner < 16; ++k_inner_inner) { for (int j_c = 0; j_c < 8; ++j_c) { compute_local[(j_c)] = (compute_local[(j_c)] + (((float)A_shared_local[(k_inner_inner)]) * ((float)B_shared_local[(((j_c * 16) + k_inner_inner))]))); } } } } for (int j_inner_inner_inner = 0; j_inner_inner_inner < 8; ++j_inner_inner_inner) { ((float*)compute)[((((((((int)blockIdx.y) * 262144) + (((int)threadIdx.y) * 4096)) + (((int)blockIdx.x) * 16)) + (((int)threadIdx.x) * 8)) + j_inner_inner_inner))] = compute_local[(j_inner_inner_inner)]; } } ``` Time cost of this operator: 0.045881 --- [Visit Topic](https://discuss.tvm.ai/t/about-tensor-core-tutorials/7092/1) to respond. You are receiving this because you enabled mailing list mode. To unsubscribe from these emails, [click here](https://discuss.tvm.ai/email/unsubscribe/0542c28c055304444b84c1d1d9677000d8ca187248f8f8e7fffb0d167f4736af).