I am trying to build tvm relay for the following model [BTS](https://github.com/cogaplex-bts/bts/blob/master/pytorch/bts.py)
while converting i am getting the following error ``` /Documents/Projects/Kyocera_depth_estimation/optimization/tvm/python/tvm/relay/frontend/pytorch.py in from_pytorch(script_module, input_shapes, custom_convert_map) 2254 2255 ret = convert_operators(_get_operator_nodes(graph.nodes()), -> 2256 outputs, ret_name, convert_map, prelude) 2257 2258 mod["main"] = tvm.relay.Function(_analysis.free_vars(ret[0]), ret[0]) ~/Documents/Projects/Kyocera_depth_estimation/optimization/tvm/python/tvm/relay/frontend/pytorch.py in convert_operators(operators, outputs, ret_names, convert_map, prelude) 2168 else: 2169 relay_op = convert_map[operator] -> 2170 relay_out = relay_op(inputs, _get_input_types(op_node)) 2171 2172 if isinstance(relay_out, tuple): ~/Documents/Projects/Kyocera_depth_estimation/optimization/tvm/python/tvm/relay/frontend/pytorch.py in _impl(inputs, input_types) 324 print("data>>>",data) 325 print("reps>>>",reps) --> 326 return _op.transform.tile(data, reps=reps) 327 return _impl 328 ~/Documents/Projects/Kyocera_depth_estimation/optimization/tvm/python/tvm/relay/op/transform.py in tile(data, reps) 446 """ 447 --> 448 return _make.tile(data, reps) 449 450 ~/Documents/Projects/Kyocera_depth_estimation/optimization/tvm/python/tvm/_ffi/_ctypes/packed_func.py in __call__(self, *args) 208 """ 209 temp_args = [] --> 210 values, tcodes, num_args = _make_tvm_args(args, temp_args) 211 ret_val = TVMValue() 212 ret_tcode = ctypes.c_int() ~/Documents/Projects/Kyocera_depth_estimation/optimization/tvm/python/tvm/_ffi/_ctypes/packed_func.py in _make_tvm_args(args, temp_args) 174 temp_args.append(arg) 175 else: --> 176 raise TypeError("Don't know how to handle type %s" % type(arg)) 177 return values, type_codes, num_args 178 **TypeError: Don't know how to handle type <class 'torch.Tensor'>** ``` I have already raised an issue which is as follows [Support for torch.repeat](https://github.com/apache/incubator-tvm/issues/5133#issuecomment-617591097) , As suggested in the above forum *Currently tvm-pytorch frontend doesnt support taking each value of `reps` as another tensor or function. It is expecting as an simple constant and in this case we are getting a multiplication operator*, i tried changing the lines in local_planar_guidance method in bts.py from ``` u = self.u.repeat(plane_eq.size(0), plane_eq.size(2) * int(self.upratio), plane_eq.size(3)) v = self.v.repeat(plane_eq.size(0), plane_eq.size(2), plane_eq.size(3) * int(self.upratio)) ``` to ``` u = self.u.repeat(plane_eq.size(0), int(plane_eq.size(2) * int(self.upratio)), plane_eq.size(3)) v = self.v.repeat(plane_eq.size(0), plane_eq.size(2), int(plane_eq.size(3) * int(self.upratio))) ``` but still the error remains same and additionally i am getting the following warning ``` /home/gopinathr/Documents/Projects/Kyocera_depth_estimation/optimization/bts_tvm/bts_inference_code/bts.py:151: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! u = self.u.repeat(plane_eq.size(0), int(plane_eq.size(2) * int(self.upratio)), plane_eq.size(3)) /home/gopinathr/Documents/Projects/Kyocera_depth_estimation/optimization/bts_tvm/bts_inference_code/bts.py:156: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! v = self.v.repeat(plane_eq.size(0), plane_eq.size(2), int(plane_eq.size(3) * int(self.upratio))) ``` I found that this is a fundamental limitation of tracing: You can't trace arbitrary Python objects, including numbers, and they will be constant to the traced functions. So the typical workaround is to trace a wrapper for repeat so i added a wrapper for repeat as follows ``` @torch.jit.script def repeat_u(x, plane_eq, upratio:int): return x.repeat(plane_eq.size(0), int(plane_eq.size(2)) * upratio, plane_eq.size(3)) @torch.jit.script def repeat_v(y, plane_eq, upratio:int): return y.repeat(plane_eq.size(0), plane_eq.size(2), int(plane_eq.size(3)) * upratio) ``` and changed the linesin local_planar_guidance module from ``` u = self.u.repeat(plane_eq.size(0), plane_eq.size(2) * int(self.upratio), plane_eq.size(3)) v = self.v.repeat(plane_eq.size(0), plane_eq.size(2), plane_eq.size(3) * int(self.upratio)) ``` to ``` u = repeat_u(self.u, plane_eq, int(self.upratio)) v = repeat_v(self.v, plane_eq, int(self.upratio)) ``` this resolved the warning while tracing but still i am getting **TypeError: Don't know how to handle type <class 'torch.Tensor'>** before usinga torch.jit.script wrapper for tracing following are the values of input and input_types for repeat are input>>> [tensor([[[0., 1., 2., 3., 4., 5., 6., 7.]]]), Var(1739, ty=TensorType([1, 1216, 44], float32))] input_types>>> ['float', 'ListType'] data>>> tensor([[[0., 1., 2., 3., 4., 5., 6., 7.]]]) reps>>> (1, 1216, 44) values of input and input_types for repeat when i use torch.jit.script wrapper are input>>> [tensor([[[0., 1., 2., 3., 4., 5., 6., 7.]]]), [1, CallNode(Op(multiply), [Constant(152), Constant(8)], (nullptr), []), 44]] input_types>>> ['float', 'ListType'] data>>> tensor([[[0., 1., 2., 3., 4., 5., 6., 7.]]]) reps>>> [1, CallNode(Op(multiply), [Constant(152), Constant(8)], (nullptr), []), 44] If anyoneknow what is the reason and how to resolve this it would be really helpful --- [Visit Topic](https://discuss.tvm.ai/t/dont-know-how-to-handle-type-class-torch-tensor-while-using-torch-repeat/6460/1) to respond. You are receiving this because you enabled mailing list mode. To unsubscribe from these emails, [click here](https://discuss.tvm.ai/email/unsubscribe/77af8d359d458a16bec981c2ae53f70ce117232aad71896d17b761ef83c4bbf5).