Hello!
I am trying to use the graph debugger to measure the performance of the VGG16 on the rk3399 board. I simply debugged it using the code below. import numpy as np from tvm import relay from tvm.relay import testing import tvm from tvm import te from tvm.contrib.debugger import debug_runtime as graph_runtime batch_size = 1 num_class = 1000 image_shape = (3, 224, 224) data_shape = (batch_size,) + image_shape out_shape = (batch_size, num_class) mod, params = relay.testing.vgg.get_workload( num_layers=16, batch_size=batch_size, image_shape=image_shape) opt_level = 3 target = tvm.target.create('llvm -device=arm_cpu -target=aarch64-linux-gnu') with relay.build_config(opt_level=opt_level): graph, lib, params = relay.build(mod, target, params=params) ctx = tvm.cpu() data = np.random.uniform(-1, 1, size=data_shape).astype("float32") # create module module = graph_runtime.create(graph, lib, ctx) # set input and parameters module.set_input("data", data) module.set_input(**params) # run module.run() However, the following memory error occurs in the rk3399 environment when running the corresponding code. ###when running code on arm cpu or mali terminate called after throwing an instance of 'std::bad_alloc' what(): std::bad_alloc The issue does not occur on Nvidia GPU or x86 CPUs. Is this simply a hardware problem with rk3399? Or is it tvm internal problem? --- [Visit Topic](https://discuss.tvm.ai/t/memory-error-when-using-graph-debugger-on-rk3399/6440/1) to respond. You are receiving this because you enabled mailing list mode. To unsubscribe from these emails, [click here](https://discuss.tvm.ai/email/unsubscribe/a1aa8c93eaab1d45986f91808d2dcfcd34072fecd077487048fc8110e73d9bce).