Quantized tf model has complex logic need to handle, which has some special ops like FakeQuant. I think we could support it in the future, because currently TFLite has helped us to handle this and we only need to parse quantized TFLite model. TF , TOCO, TFLite is one complete path for supporting tf training-aware quantization.
--- [Visit Topic](http://tracking.discuss.tvm.ai/tracking/click?d=yj3XiivBtPcgCOHFJEq7c6_-y1ldoNBeSobS3TPC9QVb9wBSCiHWNly3N6LrGaJAouRZ7L8lZgRoqCHzfEhgDHEfuyo00NBkpuP3BZf3qySx4vfaOKFTYYBjV6gxYxhUV71R-trOLdfPI1zg3fcCrOUKdylFUN4gVmo0YoneBzws0) to respond. You are receiving this because you enabled mailing list mode. To unsubscribe from these emails, [click here](http://tracking.discuss.tvm.ai/tracking/click?d=7cFgOaAA4XIBVlVKt_oyC07uihTjg4Q6cjeBRNRTiPo5aCgNxedB0LbKVfiV5DahTfafHaE6ocxLEFzSF1qoo0wRJhh51Wayi13OvFor3FCmPX-WSieFoG72IhHs4klNgbd8zr8FYWgKvyakzYaibFogpeAxPqxQkCBvoMxJ2RW_j1rA7B-JMt5JMxPiJ297p7Xx4YVQb1Nj-BG4-K2W9S7pa3flTz3Tr1LZTEqeaZU70). Tianqi Chen, UW, Seattle, WA, 98105, United States http://tracking.discuss.tvm.ai/tracking/unsubscribe?msgid=3T9aYLoHztNrh5u7I7KX0g2