From: Chris Johns <chr...@rtems.org>

---
 freebsd/sys/kern/kern_ntptime.c | 1077 +++++++++++++++++++++++++++++++
 1 file changed, 1077 insertions(+)
 create mode 100644 freebsd/sys/kern/kern_ntptime.c

diff --git a/freebsd/sys/kern/kern_ntptime.c b/freebsd/sys/kern/kern_ntptime.c
new file mode 100644
index 00000000..116fb584
--- /dev/null
+++ b/freebsd/sys/kern/kern_ntptime.c
@@ -0,0 +1,1077 @@
+#include <machine/rtems-bsd-kernel-space.h>
+
+/*-
+ ***********************************************************************
+ *                                                                    *
+ * Copyright (c) David L. Mills 1993-2001                             *
+ *                                                                    *
+ * Permission to use, copy, modify, and distribute this software and   *
+ * its documentation for any purpose and without fee is hereby        *
+ * granted, provided that the above copyright notice appears in all    *
+ * copies and that both the copyright notice and this permission       *
+ * notice appear in supporting documentation, and that the name               *
+ * University of Delaware not be used in advertising or publicity      *
+ * pertaining to distribution of the software without specific,               *
+ * written prior permission. The University of Delaware makes no       *
+ * representations about the suitability this software for any        *
+ * purpose. It is provided "as is" without express or implied         *
+ * warranty.                                                          *
+ *                                                                    *
+ **********************************************************************/
+
+/*
+ * Adapted from the original sources for FreeBSD and timecounters by:
+ * Poul-Henning Kamp <p...@freebsd.org>.
+ *
+ * The 32bit version of the "LP" macros seems a bit past its "sell by" 
+ * date so I have retained only the 64bit version and included it directly
+ * in this file.
+ *
+ * Only minor changes done to interface with the timecounters over in
+ * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
+ * confusing and/or plain wrong in that context.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <rtems/bsd/local/opt_ntp.h>
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/sysproto.h>
+#include <sys/eventhandler.h>
+#include <sys/kernel.h>
+#include <sys/priv.h>
+#include <sys/proc.h>
+#include <sys/lock.h>
+#include <sys/mutex.h>
+#include <sys/time.h>
+#include <sys/timex.h>
+#include <sys/timetc.h>
+#include <sys/timepps.h>
+#include <sys/syscallsubr.h>
+#include <sys/sysctl.h>
+
+#ifdef PPS_SYNC
+FEATURE(pps_sync, "Support usage of external PPS signal by kernel PLL");
+#endif
+
+/*
+ * Single-precision macros for 64-bit machines
+ */
+typedef int64_t l_fp;
+#define L_ADD(v, u)    ((v) += (u))
+#define L_SUB(v, u)    ((v) -= (u))
+#define L_ADDHI(v, a)  ((v) += (int64_t)(a) << 32)
+#define L_NEG(v)       ((v) = -(v))
+#define L_RSHIFT(v, n) \
+       do { \
+               if ((v) < 0) \
+                       (v) = -(-(v) >> (n)); \
+               else \
+                       (v) = (v) >> (n); \
+       } while (0)
+#define L_MPY(v, a)    ((v) *= (a))
+#define L_CLR(v)       ((v) = 0)
+#define L_ISNEG(v)     ((v) < 0)
+#define L_LINT(v, a)   ((v) = (int64_t)(a) << 32)
+#define L_GINT(v)      ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
+
+/*
+ * Generic NTP kernel interface
+ *
+ * These routines constitute the Network Time Protocol (NTP) interfaces
+ * for user and daemon application programs. The ntp_gettime() routine
+ * provides the time, maximum error (synch distance) and estimated error
+ * (dispersion) to client user application programs. The ntp_adjtime()
+ * routine is used by the NTP daemon to adjust the system clock to an
+ * externally derived time. The time offset and related variables set by
+ * this routine are used by other routines in this module to adjust the
+ * phase and frequency of the clock discipline loop which controls the
+ * system clock.
+ *
+ * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
+ * defined), the time at each tick interrupt is derived directly from
+ * the kernel time variable. When the kernel time is reckoned in
+ * microseconds, (NTP_NANO undefined), the time is derived from the
+ * kernel time variable together with a variable representing the
+ * leftover nanoseconds at the last tick interrupt. In either case, the
+ * current nanosecond time is reckoned from these values plus an
+ * interpolated value derived by the clock routines in another
+ * architecture-specific module. The interpolation can use either a
+ * dedicated counter or a processor cycle counter (PCC) implemented in
+ * some architectures.
+ *
+ * Note that all routines must run at priority splclock or higher.
+ */
+/*
+ * Phase/frequency-lock loop (PLL/FLL) definitions
+ *
+ * The nanosecond clock discipline uses two variable types, time
+ * variables and frequency variables. Both types are represented as 64-
+ * bit fixed-point quantities with the decimal point between two 32-bit
+ * halves. On a 32-bit machine, each half is represented as a single
+ * word and mathematical operations are done using multiple-precision
+ * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
+ * used.
+ *
+ * A time variable is a signed 64-bit fixed-point number in ns and
+ * fraction. It represents the remaining time offset to be amortized
+ * over succeeding tick interrupts. The maximum time offset is about
+ * 0.5 s and the resolution is about 2.3e-10 ns.
+ *
+ *                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
+ *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ * |s s s|                      ns                                |
+ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ * |                       fraction                               |
+ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ *
+ * A frequency variable is a signed 64-bit fixed-point number in ns/s
+ * and fraction. It represents the ns and fraction to be added to the
+ * kernel time variable at each second. The maximum frequency offset is
+ * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
+ *
+ *                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
+ *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ * |s s s s s s s s s s s s s|           ns/s                     |
+ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ * |                       fraction                               |
+ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ */
+/*
+ * The following variables establish the state of the PLL/FLL and the
+ * residual time and frequency offset of the local clock.
+ */
+#define SHIFT_PLL      4               /* PLL loop gain (shift) */
+#define SHIFT_FLL      2               /* FLL loop gain (shift) */
+
+static int time_state = TIME_OK;       /* clock state */
+int time_status = STA_UNSYNC;  /* clock status bits */
+static long time_tai;                  /* TAI offset (s) */
+static long time_monitor;              /* last time offset scaled (ns) */
+static long time_constant;             /* poll interval (shift) (s) */
+static long time_precision = 1;                /* clock precision (ns) */
+static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
+long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
+static long time_reftime;              /* uptime at last adjustment (s) */
+static l_fp time_offset;               /* time offset (ns) */
+static l_fp time_freq;                 /* frequency offset (ns/s) */
+static l_fp time_adj;                  /* tick adjust (ns/s) */
+
+static int64_t time_adjtime;           /* correction from adjtime(2) (usec) */
+
+static struct mtx ntp_lock;
+MTX_SYSINIT(ntp, &ntp_lock, "ntp", MTX_SPIN);
+
+#define        NTP_LOCK()              mtx_lock_spin(&ntp_lock)
+#define        NTP_UNLOCK()            mtx_unlock_spin(&ntp_lock)
+#define        NTP_ASSERT_LOCKED()     mtx_assert(&ntp_lock, MA_OWNED)
+
+#ifdef PPS_SYNC
+/*
+ * The following variables are used when a pulse-per-second (PPS) signal
+ * is available and connected via a modem control lead. They establish
+ * the engineering parameters of the clock discipline loop when
+ * controlled by the PPS signal.
+ */
+#define PPS_FAVG       2               /* min freq avg interval (s) (shift) */
+#define PPS_FAVGDEF    8               /* default freq avg int (s) (shift) */
+#define PPS_FAVGMAX    15              /* max freq avg interval (s) (shift) */
+#define PPS_PAVG       4               /* phase avg interval (s) (shift) */
+#define PPS_VALID      120             /* PPS signal watchdog max (s) */
+#define PPS_MAXWANDER  100000          /* max PPS wander (ns/s) */
+#define PPS_POPCORN    2               /* popcorn spike threshold (shift) */
+
+static struct timespec pps_tf[3];      /* phase median filter */
+static l_fp pps_freq;                  /* scaled frequency offset (ns/s) */
+static long pps_fcount;                        /* frequency accumulator */
+static long pps_jitter;                        /* nominal jitter (ns) */
+static long pps_stabil;                        /* nominal stability (scaled 
ns/s) */
+static long pps_lastsec;               /* time at last calibration (s) */
+static int pps_valid;                  /* signal watchdog counter */
+static int pps_shift = PPS_FAVG;       /* interval duration (s) (shift) */
+static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
+static int pps_intcnt;                 /* wander counter */
+
+/*
+ * PPS signal quality monitors
+ */
+static long pps_calcnt;                        /* calibration intervals */
+static long pps_jitcnt;                        /* jitter limit exceeded */
+static long pps_stbcnt;                        /* stability limit exceeded */
+static long pps_errcnt;                        /* calibration errors */
+#endif /* PPS_SYNC */
+/*
+ * End of phase/frequency-lock loop (PLL/FLL) definitions
+ */
+
+static void ntp_init(void);
+static void hardupdate(long offset);
+static void ntp_gettime1(struct ntptimeval *ntvp);
+static bool ntp_is_time_error(int tsl);
+
+static bool
+ntp_is_time_error(int tsl)
+{
+
+       /*
+        * Status word error decode. If any of these conditions occur,
+        * an error is returned, instead of the status word. Most
+        * applications will care only about the fact the system clock
+        * may not be trusted, not about the details.
+        *
+        * Hardware or software error
+        */
+       if ((tsl & (STA_UNSYNC | STA_CLOCKERR)) ||
+
+       /*
+        * PPS signal lost when either time or frequency synchronization
+        * requested
+        */
+           (tsl & (STA_PPSFREQ | STA_PPSTIME) &&
+           !(tsl & STA_PPSSIGNAL)) ||
+
+       /*
+        * PPS jitter exceeded when time synchronization requested
+        */
+           (tsl & STA_PPSTIME && tsl & STA_PPSJITTER) ||
+
+       /*
+        * PPS wander exceeded or calibration error when frequency
+        * synchronization requested
+        */
+           (tsl & STA_PPSFREQ &&
+           tsl & (STA_PPSWANDER | STA_PPSERROR)))
+               return (true);
+
+       return (false);
+}
+
+static void
+ntp_gettime1(struct ntptimeval *ntvp)
+{
+       struct timespec atv;    /* nanosecond time */
+
+       NTP_ASSERT_LOCKED();
+
+       nanotime(&atv);
+       ntvp->time.tv_sec = atv.tv_sec;
+       ntvp->time.tv_nsec = atv.tv_nsec;
+       ntvp->maxerror = time_maxerror;
+       ntvp->esterror = time_esterror;
+       ntvp->tai = time_tai;
+       ntvp->time_state = time_state;
+
+       if (ntp_is_time_error(time_status))
+               ntvp->time_state = TIME_ERROR;
+}
+
+/*
+ * ntp_gettime() - NTP user application interface
+ *
+ * See the timex.h header file for synopsis and API description.  Note that
+ * the TAI offset is returned in the ntvtimeval.tai structure member.
+ */
+#ifndef _SYS_SYSPROTO_H_
+struct ntp_gettime_args {
+       struct ntptimeval *ntvp;
+};
+#endif
+/* ARGSUSED */
+int
+sys_ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
+{      
+       struct ntptimeval ntv;
+
+       memset(&ntv, 0, sizeof(ntv));
+
+       NTP_LOCK();
+       ntp_gettime1(&ntv);
+       NTP_UNLOCK();
+
+       td->td_retval[0] = ntv.time_state;
+       return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
+}
+
+static int
+ntp_sysctl(SYSCTL_HANDLER_ARGS)
+{
+       struct ntptimeval ntv;  /* temporary structure */
+
+       memset(&ntv, 0, sizeof(ntv));
+
+       NTP_LOCK();
+       ntp_gettime1(&ntv);
+       NTP_UNLOCK();
+
+       return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
+}
+
+SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
+SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE | CTLFLAG_RD |
+    CTLFLAG_MPSAFE, 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval",
+    "");
+
+#ifdef PPS_SYNC
+SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW,
+    &pps_shiftmax, 0, "Max interval duration (sec) (shift)");
+SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW,
+    &pps_shift, 0, "Interval duration (sec) (shift)");
+SYSCTL_LONG(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD,
+    &time_monitor, 0, "Last time offset scaled (ns)");
+
+SYSCTL_S64(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD | CTLFLAG_MPSAFE,
+    &pps_freq, 0,
+    "Scaled frequency offset (ns/sec)");
+SYSCTL_S64(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD | CTLFLAG_MPSAFE,
+    &time_freq, 0,
+    "Frequency offset (ns/sec)");
+#endif
+
+/*
+ * ntp_adjtime() - NTP daemon application interface
+ *
+ * See the timex.h header file for synopsis and API description.  Note that
+ * the timex.constant structure member has a dual purpose to set the time
+ * constant and to set the TAI offset.
+ */
+#ifndef _SYS_SYSPROTO_H_
+struct ntp_adjtime_args {
+       struct timex *tp;
+};
+#endif
+
+int
+sys_ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
+{
+       struct timex ntv;       /* temporary structure */
+       long freq;              /* frequency ns/s) */
+       int modes;              /* mode bits from structure */
+       int error, retval;
+
+       error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
+       if (error)
+               return (error);
+
+       /*
+        * Update selected clock variables - only the superuser can
+        * change anything. Note that there is no error checking here on
+        * the assumption the superuser should know what it is doing.
+        * Note that either the time constant or TAI offset are loaded
+        * from the ntv.constant member, depending on the mode bits. If
+        * the STA_PLL bit in the status word is cleared, the state and
+        * status words are reset to the initial values at boot.
+        */
+       modes = ntv.modes;
+       if (modes)
+               error = priv_check(td, PRIV_NTP_ADJTIME);
+       if (error != 0)
+               return (error);
+       NTP_LOCK();
+       if (modes & MOD_MAXERROR)
+               time_maxerror = ntv.maxerror;
+       if (modes & MOD_ESTERROR)
+               time_esterror = ntv.esterror;
+       if (modes & MOD_STATUS) {
+               if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
+                       time_state = TIME_OK;
+                       time_status = STA_UNSYNC;
+#ifdef PPS_SYNC
+                       pps_shift = PPS_FAVG;
+#endif /* PPS_SYNC */
+               }
+               time_status &= STA_RONLY;
+               time_status |= ntv.status & ~STA_RONLY;
+       }
+       if (modes & MOD_TIMECONST) {
+               if (ntv.constant < 0)
+                       time_constant = 0;
+               else if (ntv.constant > MAXTC)
+                       time_constant = MAXTC;
+               else
+                       time_constant = ntv.constant;
+       }
+       if (modes & MOD_TAI) {
+               if (ntv.constant > 0) /* XXX zero & negative numbers ? */
+                       time_tai = ntv.constant;
+       }
+#ifdef PPS_SYNC
+       if (modes & MOD_PPSMAX) {
+               if (ntv.shift < PPS_FAVG)
+                       pps_shiftmax = PPS_FAVG;
+               else if (ntv.shift > PPS_FAVGMAX)
+                       pps_shiftmax = PPS_FAVGMAX;
+               else
+                       pps_shiftmax = ntv.shift;
+       }
+#endif /* PPS_SYNC */
+       if (modes & MOD_NANO)
+               time_status |= STA_NANO;
+       if (modes & MOD_MICRO)
+               time_status &= ~STA_NANO;
+       if (modes & MOD_CLKB)
+               time_status |= STA_CLK;
+       if (modes & MOD_CLKA)
+               time_status &= ~STA_CLK;
+       if (modes & MOD_FREQUENCY) {
+               freq = (ntv.freq * 1000LL) >> 16;
+               if (freq > MAXFREQ)
+                       L_LINT(time_freq, MAXFREQ);
+               else if (freq < -MAXFREQ)
+                       L_LINT(time_freq, -MAXFREQ);
+               else {
+                       /*
+                        * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
+                        * time_freq is [ns/s * 2^32]
+                        */
+                       time_freq = ntv.freq * 1000LL * 65536LL;
+               }
+#ifdef PPS_SYNC
+               pps_freq = time_freq;
+#endif /* PPS_SYNC */
+       }
+       if (modes & MOD_OFFSET) {
+               if (time_status & STA_NANO)
+                       hardupdate(ntv.offset);
+               else
+                       hardupdate(ntv.offset * 1000);
+       }
+
+       /*
+        * Retrieve all clock variables. Note that the TAI offset is
+        * returned only by ntp_gettime();
+        */
+       if (time_status & STA_NANO)
+               ntv.offset = L_GINT(time_offset);
+       else
+               ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
+       ntv.freq = L_GINT((time_freq / 1000LL) << 16);
+       ntv.maxerror = time_maxerror;
+       ntv.esterror = time_esterror;
+       ntv.status = time_status;
+       ntv.constant = time_constant;
+       if (time_status & STA_NANO)
+               ntv.precision = time_precision;
+       else
+               ntv.precision = time_precision / 1000;
+       ntv.tolerance = MAXFREQ * SCALE_PPM;
+#ifdef PPS_SYNC
+       ntv.shift = pps_shift;
+       ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
+       if (time_status & STA_NANO)
+               ntv.jitter = pps_jitter;
+       else
+               ntv.jitter = pps_jitter / 1000;
+       ntv.stabil = pps_stabil;
+       ntv.calcnt = pps_calcnt;
+       ntv.errcnt = pps_errcnt;
+       ntv.jitcnt = pps_jitcnt;
+       ntv.stbcnt = pps_stbcnt;
+#endif /* PPS_SYNC */
+       retval = ntp_is_time_error(time_status) ? TIME_ERROR : time_state;
+       NTP_UNLOCK();
+
+       error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
+       if (error == 0)
+               td->td_retval[0] = retval;
+       return (error);
+}
+
+/*
+ * second_overflow() - called after ntp_tick_adjust()
+ *
+ * This routine is ordinarily called immediately following the above
+ * routine ntp_tick_adjust(). While these two routines are normally
+ * combined, they are separated here only for the purposes of
+ * simulation.
+ */
+void
+ntp_update_second(int64_t *adjustment, time_t *newsec)
+{
+       int tickrate;
+       l_fp ftemp;             /* 32/64-bit temporary */
+
+       NTP_LOCK();
+
+       /*
+        * On rollover of the second both the nanosecond and microsecond
+        * clocks are updated and the state machine cranked as
+        * necessary. The phase adjustment to be used for the next
+        * second is calculated and the maximum error is increased by
+        * the tolerance.
+        */
+       time_maxerror += MAXFREQ / 1000;
+
+       /*
+        * Leap second processing. If in leap-insert state at
+        * the end of the day, the system clock is set back one
+        * second; if in leap-delete state, the system clock is
+        * set ahead one second. The nano_time() routine or
+        * external clock driver will insure that reported time
+        * is always monotonic.
+        */
+       switch (time_state) {
+
+               /*
+                * No warning.
+                */
+               case TIME_OK:
+               if (time_status & STA_INS)
+                       time_state = TIME_INS;
+               else if (time_status & STA_DEL)
+                       time_state = TIME_DEL;
+               break;
+
+               /*
+                * Insert second 23:59:60 following second
+                * 23:59:59.
+                */
+               case TIME_INS:
+               if (!(time_status & STA_INS))
+                       time_state = TIME_OK;
+               else if ((*newsec) % 86400 == 0) {
+                       (*newsec)--;
+                       time_state = TIME_OOP;
+                       time_tai++;
+               }
+               break;
+
+               /*
+                * Delete second 23:59:59.
+                */
+               case TIME_DEL:
+               if (!(time_status & STA_DEL))
+                       time_state = TIME_OK;
+               else if (((*newsec) + 1) % 86400 == 0) {
+                       (*newsec)++;
+                       time_tai--;
+                       time_state = TIME_WAIT;
+               }
+               break;
+
+               /*
+                * Insert second in progress.
+                */
+               case TIME_OOP:
+                       time_state = TIME_WAIT;
+               break;
+
+               /*
+                * Wait for status bits to clear.
+                */
+               case TIME_WAIT:
+               if (!(time_status & (STA_INS | STA_DEL)))
+                       time_state = TIME_OK;
+       }
+
+       /*
+        * Compute the total time adjustment for the next second
+        * in ns. The offset is reduced by a factor depending on
+        * whether the PPS signal is operating. Note that the
+        * value is in effect scaled by the clock frequency,
+        * since the adjustment is added at each tick interrupt.
+        */
+       ftemp = time_offset;
+#ifdef PPS_SYNC
+       /* XXX even if PPS signal dies we should finish adjustment ? */
+       if (time_status & STA_PPSTIME && time_status &
+           STA_PPSSIGNAL)
+               L_RSHIFT(ftemp, pps_shift);
+       else
+               L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
+#else
+               L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
+#endif /* PPS_SYNC */
+       time_adj = ftemp;
+       L_SUB(time_offset, ftemp);
+       L_ADD(time_adj, time_freq);
+       
+       /*
+        * Apply any correction from adjtime(2).  If more than one second
+        * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
+        * until the last second is slewed the final < 500 usecs.
+        */
+       if (time_adjtime != 0) {
+               if (time_adjtime > 1000000)
+                       tickrate = 5000;
+               else if (time_adjtime < -1000000)
+                       tickrate = -5000;
+               else if (time_adjtime > 500)
+                       tickrate = 500;
+               else if (time_adjtime < -500)
+                       tickrate = -500;
+               else
+                       tickrate = time_adjtime;
+               time_adjtime -= tickrate;
+               L_LINT(ftemp, tickrate * 1000);
+               L_ADD(time_adj, ftemp);
+       }
+       *adjustment = time_adj;
+               
+#ifdef PPS_SYNC
+       if (pps_valid > 0)
+               pps_valid--;
+       else
+               time_status &= ~STA_PPSSIGNAL;
+#endif /* PPS_SYNC */
+
+       NTP_UNLOCK();
+}
+
+/*
+ * ntp_init() - initialize variables and structures
+ *
+ * This routine must be called after the kernel variables hz and tick
+ * are set or changed and before the next tick interrupt. In this
+ * particular implementation, these values are assumed set elsewhere in
+ * the kernel. The design allows the clock frequency and tick interval
+ * to be changed while the system is running. So, this routine should
+ * probably be integrated with the code that does that.
+ */
+static void
+ntp_init(void)
+{
+
+       /*
+        * The following variables are initialized only at startup. Only
+        * those structures not cleared by the compiler need to be
+        * initialized, and these only in the simulator. In the actual
+        * kernel, any nonzero values here will quickly evaporate.
+        */
+       L_CLR(time_offset);
+       L_CLR(time_freq);
+#ifdef PPS_SYNC
+       pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
+       pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
+       pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
+       pps_fcount = 0;
+       L_CLR(pps_freq);
+#endif /* PPS_SYNC */     
+}
+
+SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
+
+/*
+ * hardupdate() - local clock update
+ *
+ * This routine is called by ntp_adjtime() to update the local clock
+ * phase and frequency. The implementation is of an adaptive-parameter,
+ * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
+ * time and frequency offset estimates for each call. If the kernel PPS
+ * discipline code is configured (PPS_SYNC), the PPS signal itself
+ * determines the new time offset, instead of the calling argument.
+ * Presumably, calls to ntp_adjtime() occur only when the caller
+ * believes the local clock is valid within some bound (+-128 ms with
+ * NTP). If the caller's time is far different than the PPS time, an
+ * argument will ensue, and it's not clear who will lose.
+ *
+ * For uncompensated quartz crystal oscillators and nominal update
+ * intervals less than 256 s, operation should be in phase-lock mode,
+ * where the loop is disciplined to phase. For update intervals greater
+ * than 1024 s, operation should be in frequency-lock mode, where the
+ * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
+ * is selected by the STA_MODE status bit.
+ */
+static void
+hardupdate(offset)
+       long offset;            /* clock offset (ns) */
+{
+       long mtemp;
+       l_fp ftemp;
+
+       NTP_ASSERT_LOCKED();
+
+       /*
+        * Select how the phase is to be controlled and from which
+        * source. If the PPS signal is present and enabled to
+        * discipline the time, the PPS offset is used; otherwise, the
+        * argument offset is used.
+        */
+       if (!(time_status & STA_PLL))
+               return;
+       if (!(time_status & STA_PPSTIME && time_status &
+           STA_PPSSIGNAL)) {
+               if (offset > MAXPHASE)
+                       time_monitor = MAXPHASE;
+               else if (offset < -MAXPHASE)
+                       time_monitor = -MAXPHASE;
+               else
+                       time_monitor = offset;
+               L_LINT(time_offset, time_monitor);
+       }
+
+       /*
+        * Select how the frequency is to be controlled and in which
+        * mode (PLL or FLL). If the PPS signal is present and enabled
+        * to discipline the frequency, the PPS frequency is used;
+        * otherwise, the argument offset is used to compute it.
+        */
+       if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
+               time_reftime = time_uptime;
+               return;
+       }
+       if (time_status & STA_FREQHOLD || time_reftime == 0)
+               time_reftime = time_uptime;
+       mtemp = time_uptime - time_reftime;
+       L_LINT(ftemp, time_monitor);
+       L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
+       L_MPY(ftemp, mtemp);
+       L_ADD(time_freq, ftemp);
+       time_status &= ~STA_MODE;
+       if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
+           MAXSEC)) {
+               L_LINT(ftemp, (time_monitor << 4) / mtemp);
+               L_RSHIFT(ftemp, SHIFT_FLL + 4);
+               L_ADD(time_freq, ftemp);
+               time_status |= STA_MODE;
+       }
+       time_reftime = time_uptime;
+       if (L_GINT(time_freq) > MAXFREQ)
+               L_LINT(time_freq, MAXFREQ);
+       else if (L_GINT(time_freq) < -MAXFREQ)
+               L_LINT(time_freq, -MAXFREQ);
+}
+
+#ifdef PPS_SYNC
+/*
+ * hardpps() - discipline CPU clock oscillator to external PPS signal
+ *
+ * This routine is called at each PPS interrupt in order to discipline
+ * the CPU clock oscillator to the PPS signal. There are two independent
+ * first-order feedback loops, one for the phase, the other for the
+ * frequency. The phase loop measures and grooms the PPS phase offset
+ * and leaves it in a handy spot for the seconds overflow routine. The
+ * frequency loop averages successive PPS phase differences and
+ * calculates the PPS frequency offset, which is also processed by the
+ * seconds overflow routine. The code requires the caller to capture the
+ * time and architecture-dependent hardware counter values in
+ * nanoseconds at the on-time PPS signal transition.
+ *
+ * Note that, on some Unix systems this routine runs at an interrupt
+ * priority level higher than the timer interrupt routine hardclock().
+ * Therefore, the variables used are distinct from the hardclock()
+ * variables, except for the actual time and frequency variables, which
+ * are determined by this routine and updated atomically.
+ *
+ * tsp  - time at PPS
+ * nsec - hardware counter at PPS
+ */
+void
+hardpps(struct timespec *tsp, long nsec)
+{
+       long u_sec, u_nsec, v_nsec; /* temps */
+       l_fp ftemp;
+
+       NTP_LOCK();
+
+       /*
+        * The signal is first processed by a range gate and frequency
+        * discriminator. The range gate rejects noise spikes outside
+        * the range +-500 us. The frequency discriminator rejects input
+        * signals with apparent frequency outside the range 1 +-500
+        * PPM. If two hits occur in the same second, we ignore the
+        * later hit; if not and a hit occurs outside the range gate,
+        * keep the later hit for later comparison, but do not process
+        * it.
+        */
+       time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
+       time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
+       pps_valid = PPS_VALID;
+       u_sec = tsp->tv_sec;
+       u_nsec = tsp->tv_nsec;
+       if (u_nsec >= (NANOSECOND >> 1)) {
+               u_nsec -= NANOSECOND;
+               u_sec++;
+       }
+       v_nsec = u_nsec - pps_tf[0].tv_nsec;
+       if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND - MAXFREQ)
+               goto out;
+       pps_tf[2] = pps_tf[1];
+       pps_tf[1] = pps_tf[0];
+       pps_tf[0].tv_sec = u_sec;
+       pps_tf[0].tv_nsec = u_nsec;
+
+       /*
+        * Compute the difference between the current and previous
+        * counter values. If the difference exceeds 0.5 s, assume it
+        * has wrapped around, so correct 1.0 s. If the result exceeds
+        * the tick interval, the sample point has crossed a tick
+        * boundary during the last second, so correct the tick. Very
+        * intricate.
+        */
+       u_nsec = nsec;
+       if (u_nsec > (NANOSECOND >> 1))
+               u_nsec -= NANOSECOND;
+       else if (u_nsec < -(NANOSECOND >> 1))
+               u_nsec += NANOSECOND;
+       pps_fcount += u_nsec;
+       if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
+               goto out;
+       time_status &= ~STA_PPSJITTER;
+
+       /*
+        * A three-stage median filter is used to help denoise the PPS
+        * time. The median sample becomes the time offset estimate; the
+        * difference between the other two samples becomes the time
+        * dispersion (jitter) estimate.
+        */
+       if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
+               if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
+                       v_nsec = pps_tf[1].tv_nsec;     /* 0 1 2 */
+                       u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
+               } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
+                       v_nsec = pps_tf[0].tv_nsec;     /* 2 0 1 */
+                       u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
+               } else {
+                       v_nsec = pps_tf[2].tv_nsec;     /* 0 2 1 */
+                       u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
+               }
+       } else {
+               if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
+                       v_nsec = pps_tf[1].tv_nsec;     /* 2 1 0 */
+                       u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
+               } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
+                       v_nsec = pps_tf[0].tv_nsec;     /* 1 0 2 */
+                       u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
+               } else {
+                       v_nsec = pps_tf[2].tv_nsec;     /* 1 2 0 */
+                       u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
+               }
+       }
+
+       /*
+        * Nominal jitter is due to PPS signal noise and interrupt
+        * latency. If it exceeds the popcorn threshold, the sample is
+        * discarded. otherwise, if so enabled, the time offset is
+        * updated. We can tolerate a modest loss of data here without
+        * much degrading time accuracy.
+        *
+        * The measurements being checked here were made with the system
+        * timecounter, so the popcorn threshold is not allowed to fall below
+        * the number of nanoseconds in two ticks of the timecounter.  For a
+        * timecounter running faster than 1 GHz the lower bound is 2ns, just
+        * to avoid a nonsensical threshold of zero.
+       */
+       if (u_nsec > lmax(pps_jitter << PPS_POPCORN,
+           2 * (NANOSECOND / (long)qmin(NANOSECOND, tc_getfrequency())))) {
+               time_status |= STA_PPSJITTER;
+               pps_jitcnt++;
+       } else if (time_status & STA_PPSTIME) {
+               time_monitor = -v_nsec;
+               L_LINT(time_offset, time_monitor);
+       }
+       pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
+       u_sec = pps_tf[0].tv_sec - pps_lastsec;
+       if (u_sec < (1 << pps_shift))
+               goto out;
+
+       /*
+        * At the end of the calibration interval the difference between
+        * the first and last counter values becomes the scaled
+        * frequency. It will later be divided by the length of the
+        * interval to determine the frequency update. If the frequency
+        * exceeds a sanity threshold, or if the actual calibration
+        * interval is not equal to the expected length, the data are
+        * discarded. We can tolerate a modest loss of data here without
+        * much degrading frequency accuracy.
+        */
+       pps_calcnt++;
+       v_nsec = -pps_fcount;
+       pps_lastsec = pps_tf[0].tv_sec;
+       pps_fcount = 0;
+       u_nsec = MAXFREQ << pps_shift;
+       if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 << pps_shift)) {
+               time_status |= STA_PPSERROR;
+               pps_errcnt++;
+               goto out;
+       }
+
+       /*
+        * Here the raw frequency offset and wander (stability) is
+        * calculated. If the wander is less than the wander threshold
+        * for four consecutive averaging intervals, the interval is
+        * doubled; if it is greater than the threshold for four
+        * consecutive intervals, the interval is halved. The scaled
+        * frequency offset is converted to frequency offset. The
+        * stability metric is calculated as the average of recent
+        * frequency changes, but is used only for performance
+        * monitoring.
+        */
+       L_LINT(ftemp, v_nsec);
+       L_RSHIFT(ftemp, pps_shift);
+       L_SUB(ftemp, pps_freq);
+       u_nsec = L_GINT(ftemp);
+       if (u_nsec > PPS_MAXWANDER) {
+               L_LINT(ftemp, PPS_MAXWANDER);
+               pps_intcnt--;
+               time_status |= STA_PPSWANDER;
+               pps_stbcnt++;
+       } else if (u_nsec < -PPS_MAXWANDER) {
+               L_LINT(ftemp, -PPS_MAXWANDER);
+               pps_intcnt--;
+               time_status |= STA_PPSWANDER;
+               pps_stbcnt++;
+       } else {
+               pps_intcnt++;
+       }
+       if (pps_intcnt >= 4) {
+               pps_intcnt = 4;
+               if (pps_shift < pps_shiftmax) {
+                       pps_shift++;
+                       pps_intcnt = 0;
+               }
+       } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
+               pps_intcnt = -4;
+               if (pps_shift > PPS_FAVG) {
+                       pps_shift--;
+                       pps_intcnt = 0;
+               }
+       }
+       if (u_nsec < 0)
+               u_nsec = -u_nsec;
+       pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
+
+       /*
+        * The PPS frequency is recalculated and clamped to the maximum
+        * MAXFREQ. If enabled, the system clock frequency is updated as
+        * well.
+        */
+       L_ADD(pps_freq, ftemp);
+       u_nsec = L_GINT(pps_freq);
+       if (u_nsec > MAXFREQ)
+               L_LINT(pps_freq, MAXFREQ);
+       else if (u_nsec < -MAXFREQ)
+               L_LINT(pps_freq, -MAXFREQ);
+       if (time_status & STA_PPSFREQ)
+               time_freq = pps_freq;
+
+out:
+       NTP_UNLOCK();
+}
+#endif /* PPS_SYNC */
+
+#ifndef _SYS_SYSPROTO_H_
+struct adjtime_args {
+       struct timeval *delta;
+       struct timeval *olddelta;
+};
+#endif
+/* ARGSUSED */
+int
+sys_adjtime(struct thread *td, struct adjtime_args *uap)
+{
+       struct timeval delta, olddelta, *deltap;
+       int error;
+
+       if (uap->delta) {
+               error = copyin(uap->delta, &delta, sizeof(delta));
+               if (error)
+                       return (error);
+               deltap = &delta;
+       } else
+               deltap = NULL;
+       error = kern_adjtime(td, deltap, &olddelta);
+       if (uap->olddelta && error == 0)
+               error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
+       return (error);
+}
+
+int
+kern_adjtime(struct thread *td, struct timeval *delta, struct timeval 
*olddelta)
+{
+       struct timeval atv;
+       int64_t ltr, ltw;
+       int error;
+
+       if (delta != NULL) {
+               error = priv_check(td, PRIV_ADJTIME);
+               if (error != 0)
+                       return (error);
+               ltw = (int64_t)delta->tv_sec * 1000000 + delta->tv_usec;
+       }
+       NTP_LOCK();
+       ltr = time_adjtime;
+       if (delta != NULL)
+               time_adjtime = ltw;
+       NTP_UNLOCK();
+       if (olddelta != NULL) {
+               atv.tv_sec = ltr / 1000000;
+               atv.tv_usec = ltr % 1000000;
+               if (atv.tv_usec < 0) {
+                       atv.tv_usec += 1000000;
+                       atv.tv_sec--;
+               }
+               *olddelta = atv;
+       }
+       return (0);
+}
+
+static struct callout resettodr_callout;
+static int resettodr_period = 1800;
+
+static void
+periodic_resettodr(void *arg __unused)
+{
+
+       /*
+        * Read of time_status is lock-less, which is fine since
+        * ntp_is_time_error() operates on the consistent read value.
+        */
+       if (!ntp_is_time_error(time_status))
+               resettodr();
+       if (resettodr_period > 0)
+               callout_schedule(&resettodr_callout, resettodr_period * hz);
+}
+
+static void
+shutdown_resettodr(void *arg __unused, int howto __unused)
+{
+
+       callout_drain(&resettodr_callout);
+       /* Another unlocked read of time_status */
+       if (resettodr_period > 0 && !ntp_is_time_error(time_status))
+               resettodr();
+}
+
+static int
+sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
+{
+       int error;
+
+       error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
+       if (error || !req->newptr)
+               return (error);
+       if (cold)
+               goto done;
+       if (resettodr_period == 0)
+               callout_stop(&resettodr_callout);
+       else
+               callout_reset(&resettodr_callout, resettodr_period * hz,
+                   periodic_resettodr, NULL);
+done:
+       return (0);
+}
+
+SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT | CTLFLAG_RWTUN |
+    CTLFLAG_MPSAFE, &resettodr_period, 1800, sysctl_resettodr_period, "I",
+    "Save system time to RTC with this period (in seconds)");
+
+static void
+start_periodic_resettodr(void *arg __unused)
+{
+
+       EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL,
+           SHUTDOWN_PRI_FIRST);
+       callout_init(&resettodr_callout, 1);
+       if (resettodr_period == 0)
+               return;
+       callout_reset(&resettodr_callout, resettodr_period * hz,
+           periodic_resettodr, NULL);
+}
+
+SYSINIT(periodic_resettodr, SI_SUB_LAST, SI_ORDER_MIDDLE,
+       start_periodic_resettodr, NULL);
-- 
2.17.1

_______________________________________________
devel mailing list
devel@rtems.org
http://lists.rtems.org/mailman/listinfo/devel

Reply via email to