Import whetstone sources from:

http://www.netlib.org/benchmark/whetstone.c
---
 testsuites/benchmarks/whetstone/whetstone.c | 433 ++++++++++++++++++++++++++++
 1 file changed, 433 insertions(+)
 create mode 100644 testsuites/benchmarks/whetstone/whetstone.c

diff --git a/testsuites/benchmarks/whetstone/whetstone.c 
b/testsuites/benchmarks/whetstone/whetstone.c
new file mode 100644
index 0000000..159a11a
--- /dev/null
+++ b/testsuites/benchmarks/whetstone/whetstone.c
@@ -0,0 +1,433 @@
+/*
+ * C Converted Whetstone Double Precision Benchmark
+ *             Version 1.2     22 March 1998
+ *
+ *     (c) Copyright 1998 Painter Engineering, Inc.
+ *             All Rights Reserved.
+ *
+ *             Permission is granted to use, duplicate, and
+ *             publish this text and program as long as it
+ *             includes this entire comment block and limited
+ *             rights reference.
+ *
+ * Converted by Rich Painter, Painter Engineering, Inc. based on the
+ * www.netlib.org benchmark/whetstoned version obtained 16 March 1998.
+ *
+ * A novel approach was used here to keep the look and feel of the
+ * FORTRAN version.  Altering the FORTRAN-based array indices,
+ * starting at element 1, to start at element 0 for C, would require
+ * numerous changes, including decrementing the variable indices by 1.
+ * Instead, the array E1[] was declared 1 element larger in C.  This
+ * allows the FORTRAN index range to function without any literal or
+ * variable indices changes.  The array element E1[0] is simply never
+ * used and does not alter the benchmark results.
+ *
+ * The major FORTRAN comment blocks were retained to minimize
+ * differences between versions.  Modules N5 and N12, like in the
+ * FORTRAN version, have been eliminated here.
+ *
+ * An optional command-line argument has been provided [-c] to
+ * offer continuous repetition of the entire benchmark.
+ * An optional argument for setting an alternate LOOP count is also
+ * provided.  Define PRINTOUT to cause the POUT() function to print
+ * outputs at various stages.  Final timing measurements should be
+ * made with the PRINTOUT undefined.
+ *
+ * Questions and comments may be directed to the author at
+ *                     r.pain...@ieee.org
+ */
+/*
+C**********************************************************************
+C     Benchmark #2 -- Double  Precision Whetstone (A001)
+C
+C     o        This is a REAL*8 version of
+C      the Whetstone benchmark program.
+C
+C     o        DO-loop semantics are ANSI-66 compatible.
+C
+C     o        Final measurements are to be made with all
+C      WRITE statements and FORMAT sttements removed.
+C
+C**********************************************************************   
+*/
+
+/* standard C library headers required */
+#include <stdlib.h>
+#include <stdio.h>
+#include <string.h>
+#include <math.h>
+
+/* the following is optional depending on the timing function used */
+#include <time.h>
+
+/* map the FORTRAN math functions, etc. to the C versions */
+#define DSIN   sin
+#define DCOS   cos
+#define DATAN  atan
+#define DLOG   log
+#define DEXP   exp
+#define DSQRT  sqrt
+#define IF             if
+
+/* function prototypes */
+void POUT(long N, long J, long K, double X1, double X2, double X3, double X4);
+void PA(double E[]);
+void P0(void);
+void P3(double X, double Y, double *Z);
+#define USAGE  "usage: whetdc [-c] [loops]\n"
+
+/*
+       COMMON T,T1,T2,E1(4),J,K,L
+*/
+double T,T1,T2,E1[5];
+int J,K,L;
+
+int
+main(int argc, char *argv[])
+{
+       /* used in the FORTRAN version */
+       long I;
+       long N1, N2, N3, N4, N6, N7, N8, N9, N10, N11;
+       double X1,X2,X3,X4,X,Y,Z;
+       long LOOP;
+       int II, JJ;
+
+       /* added for this version */
+       long loopstart;
+       long startsec, finisec;
+       float KIPS;
+       int continuous;
+
+       loopstart = 1000;               /* see the note about LOOP below */
+       continuous = 0;
+
+       II = 1;         /* start at the first arg (temp use of II here) */
+       while (II < argc) {
+               if (strncmp(argv[II], "-c", 2) == 0 || argv[II][0] == 'c') {
+                       continuous = 1;
+               } else if (atol(argv[II]) > 0) {
+                       loopstart = atol(argv[II]);
+               } else {
+                       fprintf(stderr, USAGE);
+                       return(1);
+               }
+               II++;
+       }
+
+LCONT:
+/*
+C
+C      Start benchmark timing at this point.
+C
+*/
+       startsec = time(0);
+
+/*
+C
+C      The actual benchmark starts here.
+C
+*/
+       T  = .499975;
+       T1 = 0.50025;
+       T2 = 2.0;
+/*
+C
+C      With loopcount LOOP=10, one million Whetstone instructions
+C      will be executed in EACH MAJOR LOOP..A MAJOR LOOP IS EXECUTED
+C      'II' TIMES TO INCREASE WALL-CLOCK TIMING ACCURACY.
+C
+       LOOP = 1000;
+*/
+       LOOP = loopstart;
+       II   = 1;
+
+       JJ = 1;
+
+IILOOP:
+       N1  = 0;
+       N2  = 12 * LOOP;
+       N3  = 14 * LOOP;
+       N4  = 345 * LOOP;
+       N6  = 210 * LOOP;
+       N7  = 32 * LOOP;
+       N8  = 899 * LOOP;
+       N9  = 616 * LOOP;
+       N10 = 0;
+       N11 = 93 * LOOP;
+/*
+C
+C      Module 1: Simple identifiers
+C
+*/
+       X1  =  1.0;
+       X2  = -1.0;
+       X3  = -1.0;
+       X4  = -1.0;
+
+       for (I = 1; I <= N1; I++) {
+           X1 = (X1 + X2 + X3 - X4) * T;
+           X2 = (X1 + X2 - X3 + X4) * T;
+           X3 = (X1 - X2 + X3 + X4) * T;
+           X4 = (-X1+ X2 + X3 + X4) * T;
+       }
+#ifdef PRINTOUT
+       IF (JJ==II)POUT(N1,N1,N1,X1,X2,X3,X4);
+#endif
+
+/*
+C
+C      Module 2: Array elements
+C
+*/
+       E1[1] =  1.0;
+       E1[2] = -1.0;
+       E1[3] = -1.0;
+       E1[4] = -1.0;
+
+       for (I = 1; I <= N2; I++) {
+           E1[1] = ( E1[1] + E1[2] + E1[3] - E1[4]) * T;
+           E1[2] = ( E1[1] + E1[2] - E1[3] + E1[4]) * T;
+           E1[3] = ( E1[1] - E1[2] + E1[3] + E1[4]) * T;
+           E1[4] = (-E1[1] + E1[2] + E1[3] + E1[4]) * T;
+       }
+
+#ifdef PRINTOUT
+       IF (JJ==II)POUT(N2,N3,N2,E1[1],E1[2],E1[3],E1[4]);
+#endif
+
+/*
+C
+C      Module 3: Array as parameter
+C
+*/
+       for (I = 1; I <= N3; I++)
+               PA(E1);
+
+#ifdef PRINTOUT
+       IF (JJ==II)POUT(N3,N2,N2,E1[1],E1[2],E1[3],E1[4]);
+#endif
+
+/*
+C
+C      Module 4: Conditional jumps
+C
+*/
+       J = 1;
+       for (I = 1; I <= N4; I++) {
+               if (J == 1)
+                       J = 2;
+               else
+                       J = 3;
+
+               if (J > 2)
+                       J = 0;
+               else
+                       J = 1;
+
+               if (J < 1)
+                       J = 1;
+               else
+                       J = 0;
+       }
+
+#ifdef PRINTOUT
+       IF (JJ==II)POUT(N4,J,J,X1,X2,X3,X4);
+#endif
+
+/*
+C
+C      Module 5: Omitted
+C      Module 6: Integer arithmetic
+C
+*/
+
+       J = 1;
+       K = 2;
+       L = 3;
+
+       for (I = 1; I <= N6; I++) {
+           J = J * (K-J) * (L-K);
+           K = L * K - (L-J) * K;
+           L = (L-K) * (K+J);
+           E1[L-1] = J + K + L;
+           E1[K-1] = J * K * L;
+       }
+
+#ifdef PRINTOUT
+       IF (JJ==II)POUT(N6,J,K,E1[1],E1[2],E1[3],E1[4]);
+#endif
+
+/*
+C
+C      Module 7: Trigonometric functions
+C
+*/
+       X = 0.5;
+       Y = 0.5;
+
+       for (I = 1; I <= N7; I++) {
+               X = T * DATAN(T2*DSIN(X)*DCOS(X)/(DCOS(X+Y)+DCOS(X-Y)-1.0));
+               Y = T * DATAN(T2*DSIN(Y)*DCOS(Y)/(DCOS(X+Y)+DCOS(X-Y)-1.0));
+       }
+
+#ifdef PRINTOUT
+       IF (JJ==II)POUT(N7,J,K,X,X,Y,Y);
+#endif
+
+/*
+C
+C      Module 8: Procedure calls
+C
+*/
+       X = 1.0;
+       Y = 1.0;
+       Z = 1.0;
+
+       for (I = 1; I <= N8; I++)
+               P3(X,Y,&Z);
+
+#ifdef PRINTOUT
+       IF (JJ==II)POUT(N8,J,K,X,Y,Z,Z);
+#endif
+
+/*
+C
+C      Module 9: Array references
+C
+*/
+       J = 1;
+       K = 2;
+       L = 3;
+       E1[1] = 1.0;
+       E1[2] = 2.0;
+       E1[3] = 3.0;
+
+       for (I = 1; I <= N9; I++)
+               P0();
+
+#ifdef PRINTOUT
+       IF (JJ==II)POUT(N9,J,K,E1[1],E1[2],E1[3],E1[4]);
+#endif
+
+/*
+C
+C      Module 10: Integer arithmetic
+C
+*/
+       J = 2;
+       K = 3;
+
+       for (I = 1; I <= N10; I++) {
+           J = J + K;
+           K = J + K;
+           J = K - J;
+           K = K - J - J;
+       }
+
+#ifdef PRINTOUT
+       IF (JJ==II)POUT(N10,J,K,X1,X2,X3,X4);
+#endif
+
+/*
+C
+C      Module 11: Standard functions
+C
+*/
+       X = 0.75;
+
+       for (I = 1; I <= N11; I++)
+               X = DSQRT(DEXP(DLOG(X)/T1));
+
+#ifdef PRINTOUT
+       IF (JJ==II)POUT(N11,J,K,X,X,X,X);
+#endif
+
+/*
+C
+C      THIS IS THE END OF THE MAJOR LOOP.
+C
+*/
+       if (++JJ <= II)
+               goto IILOOP;
+
+/*
+C
+C      Stop benchmark timing at this point.
+C
+*/
+       finisec = time(0);
+
+/*
+C----------------------------------------------------------------
+C      Performance in Whetstone KIP's per second is given by
+C
+C      (100*LOOP*II)/TIME
+C
+C      where TIME is in seconds.
+C--------------------------------------------------------------------
+*/
+       printf("\n");
+       if (finisec-startsec <= 0) {
+               printf("Insufficient duration- Increase the LOOP count\n");
+               return(1);
+       }
+
+       printf("Loops: %ld, Iterations: %d, Duration: %ld sec.\n",
+                       LOOP, II, finisec-startsec);
+
+       KIPS = (100.0*LOOP*II)/(float)(finisec-startsec);
+       if (KIPS >= 1000.0)
+               printf("C Converted Double Precision Whetstones: %.1f MIPS\n", 
KIPS/1000.0);
+       else
+               printf("C Converted Double Precision Whetstones: %.1f KIPS\n", 
KIPS);
+
+       if (continuous)
+               goto LCONT;
+
+       return(0);
+}
+
+void
+PA(double E[])
+{
+       J = 0;
+
+L10:
+       E[1] = ( E[1] + E[2] + E[3] - E[4]) * T;
+       E[2] = ( E[1] + E[2] - E[3] + E[4]) * T;
+       E[3] = ( E[1] - E[2] + E[3] + E[4]) * T;
+       E[4] = (-E[1] + E[2] + E[3] + E[4]) / T2;
+       J += 1;
+
+       if (J < 6)
+               goto L10;
+}
+
+void
+P0(void)
+{
+       E1[J] = E1[K];
+       E1[K] = E1[L];
+       E1[L] = E1[J];
+}
+
+void
+P3(double X, double Y, double *Z)
+{
+       double X1, Y1;
+
+       X1 = X;
+       Y1 = Y;
+       X1 = T * (X1 + Y1);
+       Y1 = T * (X1 + Y1);
+       *Z  = (X1 + Y1) / T2;
+}
+
+#ifdef PRINTOUT
+void
+POUT(long N, long J, long K, double X1, double X2, double X3, double X4)
+{
+       printf("%7ld %7ld %7ld %12.4e %12.4e %12.4e %12.4e\n",
+                                               N, J, K, X1, X2, X3, X4);
+}
+#endif
-- 
1.8.4.5

_______________________________________________
devel mailing list
devel@rtems.org
http://lists.rtems.org/mailman/listinfo/devel

Reply via email to