[bookmark: h.yt7fvil984hj]Nested Mutexes

Google Summer of Code Program 2015 Project Proposal
Saurabh Gadia
gadia@usc.edu
University of Southern California
Los Angeles, US
Ph.No- +1-213-284-8584

Project Abstract. (bit more than mentioned limit but was essential for explaining the problem to viewers)

The current implementation of strict order mutexes in rtems is based on LIFO ordering. So whenever thread tries to acquire mutex lock(_CORE_mutex_Surrender() - coremutexsurrender.c) its priority before acquiring the lock is pushed to that mutex’s thread queue. So whenever thread release any lock then that lock’s queue is consulted and thread’s priority is restored. This restore of priority on release operation demotes its priority to what it was before acquiring the released lock and thus priority inheritance effect may get lost. So this mechanism of restoring priority may induce unbounded priority inversion if higher priority thread is contending for a lock still hold by our candidate thread. So I propose an efficient solution for this unbounded priority inversion problem.

Project Description.
 Problem
 Addressing the priority inversion problem caused due to effect of CORE_mutex_Disciplines type -CORE_MUTEX_DISCIPLINES_PRIORITY_INHERIT (coremutex.h).

 Proposed Solution (very naive and efficient solution)
1. Every thread operating on mutexes which follow above mentioned discipline maintains a chain “Chain_Control: lock_mutex” in its “Thread_Control_struct” for managing priority inheritance mutex held by the thread.(Thread.h)
2. So according to LIFO property of strict ordering mutexes, when thread tries to acquire such lock then it just pushes the mutex to this chain and for release it just pops from the top of this chain.

3. So whenever candidate thread tries to release a strict lock it pops the lock from its top of the chain and compares it with the lock it is actually releasing. So if match occurs(consistent behavior) it just release the lock and restores the priority of the thread maintained by the mutex->queue.

My changes to code:-
4. Priority inheritance operation: Whenever higher priority thread as compared to candidate thread’s priority is contending for a lock held by candidate thread then priority of candidate thread is promoted. So in addition to it we do basic modification:- With promoting priority of candidate thread we traverse the mutex chain maintained by its thread_control_block and change the mutex->queue.priority_before to newly promoted priority till it reaches the mutex queue on which higher priority thread is contending.

5. So even if new thread with higher priority than candidate thread but lower than the prior contending thread wants to acquire the lock hold by candidate thread will not get control when the lock on which it is blocked is released because higher priority thread is still blocked. (As expected behavior).

Illustration:-
1. Lets say our candidate thread have priority =8 and acquires all the strict mutexes with mutex (m5) at top. So a in mutex->queue the priority are stored while acquiring the mutexes.

	Acquired Mutex handle(M5)
	M4
	M3
	M2
	M1
	….

 | | | | |
 V V V V V
	M5->Priority_be-fore = 8
	8
	8
	8
	8
	….

 2. Now thread 1 with priority=1 tries to acquire m3. So to avoid priority inversion candidates thread’s priority gets promoted to this threads priority.

	Acquired Mutex handle(M5)
	M4
	M3
	M2
	M1
	….

 | | | | |
 V V V V V
	M5->Priority_be-fore = 1
	1
	8
	8
	8
	….

 3. Now thread 2 with priority=2 tries to acquire m4. So no promotion takes place as candidates threads priority for m4 is already higher than this threads priority.

4. Now thread 3 with priority=4 tries to acquire m1. So to avoid priority inversion, candidates thread’s priority gets promoted to this threads priority like this .

	Acquired Mutex handle(M5)
	M4
	M3
	M2
	M1
	….

 | | | | |
 V V V V V
	M5->Priority_be-fore = 1
	1
	4
	4
	8
	….

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

Another approach for this problem can be having something similar approach to this and see what else in rtems can be integrated with it: ​http://lxr.free-electrons.com/source/include/linux/plist.h

6. I also have to consider also we have to consider the implications of potential parallelism/contention on the locks iterating over data structures during acquire/release operations.

7. For further thinking I have to also work on situation of nested mutexes in multicore system.

Project Deliverables
· May 25 (coding begins) -
1. Mandatory setup of all tools and other code revision control systems.
2. Get familiarize with Process and Thread control structures and their life cycle for both uniprocessor as well as multi-core processor.
3. Have a detailed discussion with mentor regarding what other approaches and solution can help solve this problem along with some other good prospects in code.
4. I will also discuss and finalize multicore aspect of project with the mentor during community bonding period and cement out its scope for this project.
5. Finalize cause-effect action of the solution and roughly script down where exactly changes are required for the code.
6. Script down backup-plans for last minute unavoidable/uncovered problems in finalized solution.

· June 26 (Midterm Evaluation) -
1. I will be done with the basic version of problem for uniprocessor along with its testing by devising test cases.
2. I will proceed towards the multicore aspect of the problem.

· August 21 (Final Evaluation) -
1. Finish the targeted multicore problem for the project.
2. Complete regression testing on code changes made.
3. Code-freeze. Stabilize the code merges.
4. Final review of code along with mentor.
5. Submit documentation of what problem is addressed and changes made to code.
· August 28 (Final Results Announced) -
1. Submit documentation of process and thread life cycle in rtems for future benefit of the society.
2. Code cleanup which was discussed in above phase.
3. Script down what enhancement and future work can be done for the accomplished project.
· Post GSOC -
1. Really!! I have to gear up for my next semester at USC.
2. Share my experiences with my friends about GSOC and RTEMS.
3. Be an active member on mailing list and help in any assigned work or projects.

Proposed Schedule

During each phase, please make it clear whether code will be ready to be submitted for inclusion. Also ensure that your code will be available for review regularly. Do not work long periods without submitting code to the code.google.com repository.

Some projects are organized where they can be submitted in increments to the RTEMS repository. If your project is of this type, make this clear. But your patches should be tracked through code.google.com so they trip your final payment from Google.

Replace name with the name of this phase as appropriate for your project. Words like design, integration, test, etc.

March 6 - March 27 (Application Period)

1. Shortlisted and prioritized all 137 participating mentoring organization.
2. Prioritized projects of shortlisted mentoring organization.
3. Worked on solution for selected projects.
4. Read research papers and other references to get more clear picture of the idea.

March 28 - April 27 (Acceptance Waiting Period)

1. I will explore the code base of rtems project.
2. I will carry on work on multi-core aspect of project with mentors and professors on-campus at USC.
3. I will have my semester final exams during ending weeks of april so will be a bit busy towards end.

April 27 - May 24 (Community Bonding Period)

1. Finish the formal mandatory chores required for working on project.
2. Discuss and thinly scope out the deliverables of the project with mentors.
3. Also work on additional work suggested by mentors if time permits if things are done before anticipated time.

May 25 - June 26 (First Half)

1. Deliver the code for uniprocessor aspect of the project.
2. Will work on test results and time-efficiency related issues of project. Submit the comparison of overhead before and after implementation.

June 27 - August 21 (Second Half)
1. Work on the implementation of multi-core aspect of project.
2. Design test-cases which like multi-body problem which will illustrate the solution behavior behavior in details.
3. Code sanitization, Documentation and scripting uncovered future aspect to the problem will also be part of this phase.

Future Improvements

Here, some future improvements on this project are proposed. This would be done after the GSoC program time line or as Bonus implementation during the program itself if things go better than expected.

Continued Involvement

I would be more than happy to serve rtems community by contributing in any of its future projects or undertaking. I would be happy to guide or share new my knowledge to new members of this and other open source communities.

Conflict of Interests or Commitment

· There are no such conflict of interest in serving towards this project. I can allocate 30-40 hrs/week towards the project and would work more as per the requirement.

Major Challenges foreseen

· Main challenge that I can encounter is the system performance issue mainly because of overhead of updating additional data structures.
· Implementation of multicore behavior for this problem.

References
· RTEMS source code.
· “Non Scalable Locks are dangerous” by Silas Boyd-Wickizer et al.
· “Lottery Scheduling : Flexible Proportional-Share Resource Management” by Carl A. Waldspurger and William E. Weihl for rtems SMP locks are implemented as a ticket lock.
· Research works of Prof. Bjoern Brandenburg
· L. Torvalds et al. Linux source code. http://www.kernel.org/
· https://devel.rtems.org/wiki/Developer/SMP#SMPLocks

Relevant Background Experience

· Weenix kernel subsystem development as part of Operating System class
1. Process Management Subsystem:
· Implemented process, mutex, thread, thread scheduler modules for weenix kernel process subsystem in C.
2. Virtual File system Layer
· Implemented polymorphic virtual FS syscall module to support system calls of all Actual FS like RAMFS, S5FS, etc.
3. Memory management unit
· Implemented process’s virtual memory map, pagefault handler and kernel’s system call interface modules.

· JOS Kernel Subsystems
Implemented process bootup, memory management, user environments, pre-emptive multitasking, File System and network driver modules for multi-processor JOS kernel.

[bookmark: h.o6htwkevzyus]Personal
Hello Folks, My name is Saurabh Gadia. I am pursuing my Masters in Computer Science from University of Southern California(USC). Currently I am into my 2nd semester. I have profound interest in Operating Systems domain. I have also taken courses like Operating Systems and Advanced Operating Systems which helped me refine all my concepts about this domain. As a part of Advanced OS (link) we have excellent set of research papers which further enlightens me with approaches that are usually preferred when dealing with particular problem set.
I came to know about RTEMS through GSOC mentor list. Really GSOC is great platform to bridge distance between prospective contributors and open source communities. I consider this as my first step towards getting connected with open source community.
I am passionate about this domain because it is the core concept which everyone should know before writing any userland applications. It helps in understanding how to design smart algorithms, data structures which will make user-level code run more efficiently and utilize optimal resources in kernel. Most importantly, I love debugging kernel code because it is the only thing that can enrich your knowledge about kernel code.

[bookmark: h.anttr029nkly]
[bookmark: h.fjohxtgevoc0]
[bookmark: h.teghvdie03u0]Experience
Language Skill Set
· Proficient with C and Python.

Related Research and Work Experience (if any):
 Domain related work experience is mentioned in above “related background blog”.

1. Druva Data Solution Pvt. Ltd., Pune, India. (Software Developer) june 2013 - june 2014

Reference Links and Web URLs (optional):

· IRC handle: sgworks
· LinkedIn: https://www.linkedin.com/in/gadiasaurabh
· github: https://github.com/saurabhgadia4
	(Some projects are private due to university restrictions. Can provide read only access if required).
