Base on
https://tvm-book.readthedocs.io/zh-cn/latest/old/read/transforms/chaos/div-to-mul.html,
I get a test, which show the tvm can do **DivToMul** with
**relay.transform.DivToMul**. But for a more common case, we may have a model
which have many div operators, so it is not convenience to transform it one by
one, and my question:Does tvm support DivToMul without indications,and
transform all the div into mul for better performance ?
* test:
```
import tvm
from tvm import relay
import numpy as np
for dtype, rtol in [("float16", 1e-3), ("float32", 1e-7), ("float64", 1e-12)]:
x = relay.var("x", relay.TensorType((), dtype))
y = relay.Constant(tvm.nd.array(np.array([1.5]).astype(dtype)))
z = x / y
mod = tvm.IRModule.from_expr(z)
transformed = relay.transform.DivToMul()(mod)
assert transformed["main"].body.op.name == "multiply"
np.testing.assert_allclose(transformed["main"].body.args[1].data.numpy()[0], 1
/ 1.5, rtol=rtol)
```
* debug
```
(Pdb) n
> divtomul.py(11)<module>()
-> assert transformed["main"].body.op.name == "multiply"
(Pdb) p transformed
def @main(%x: float16 /* ty=float16 */) -> Tensor[(1), float16] {
multiply(%x, meta[relay.Constant][0] /* ty=Tensor[(1), float16] */) /*
ty=Tensor[(1), float16] */
}
```
---
[Visit
Topic](https://discuss.tvm.apache.org/t/compile-does-tvm-support-divtomul-without-indications/18412/1)
to respond.
You are receiving this because you enabled mailing list mode.
To unsubscribe from these emails, [click
here](https://discuss.tvm.apache.org/email/unsubscribe/07e93152a610299d14e25d67fd8e9e083a701bddfa477650edf647d045b955d4).