hi, I have a question about the solution code in [https://github.com/dmlc/tvm/issues/1625](https://github.com/dmlc/tvm/issues/1625) > import tvm > import numpy as np
> def intrin_vadd(n): > x = tvm.placeholder((n, 1, 1), name='vx') > y = tvm.placeholder((n, 1, 1), name='vy') > z = tvm.compute(x.shape, lambda i, j, k: x[i, j, k] + y[i, j, k], > name='z') > def intrin_func(ins, outs): > xx, yy = ins > zz = outs[0] > return tvm.call_packed("vadd", xx, yy, zz) > > > strides = [tvm.var('so'), tvm.var('si'), 1] > offset_factor = 1 > xb = tvm.decl_buffer(x.shape, x.dtype, > name="xb", > offset_factor=offset_factor, > strides=strides) > yb = tvm.decl_buffer(y.shape, y.dtype, > name="yb", > offset_factor=offset_factor, > strides=strides) > zb = tvm.decl_buffer(z.shape, z.dtype, > name="zb", > offset_factor=offset_factor, > strides=strides) > binds = {x: xb, y: yb, z: zb} > return tvm.decl_tensor_intrin(z.op, intrin_func, binds=binds) > def test_tensori > ze_vadd(): > m = 16 > n = 16 > l = 16 > x = tvm.placeholder((m,n, l), name='x') > y = tvm.placeholder((m,n, l), name='y') > z = tvm.compute(x.shape, lambda i,j, k: x[i,j, k] + y[i,j, k], name='z') > > def check(factor): > s = tvm.create_schedule(z.op) > xa, xb, xc = s[z].op.axis > s[z].reorder(xb, xc, xa) > print(tvm.lower(s, [x, y, z], simple_mode=True)) > vadd = intrin_vadd(factor) > s[z].tensorize(xa, vadd) > s = s.normalize() > print(tvm.lower(s, [x, y, z], simple_mode=True)) > > check(16) > > test_tensorize_vadd() After the reorder, xa become the innermost axis. Why should we tensorize it with a tensor with 3 dims. It's just one loop. And if I change the intrin tensor to 1 dim ,error will occour. --- [Visit Topic](https://discuss.tvm.ai/t/tensorize-tensorize-failed-after-reorder/722/2) to respond. You are receiving this because you enabled mailing list mode. To unsubscribe from these emails, [click here](https://discuss.tvm.ai/email/unsubscribe/64ecedc821ee204c6c70650b15116628a7d76f71b148a1be8b583196c6e99f9c). Tianqi Chen, UW, Seattle, WA, 98105, United States http://tracking.discuss.tvm.ai/tracking/unsubscribe?msgid=M4vzfKANxLAeSm3eBKyr0w2