Sorry Luc, I had the file set on my linux box. When it died, I moved to the
mac and neglected to make the changes.

On Fri, Oct 7, 2011 at 10:21 AM, Greg Sterijevski <gsterijev...@gmail.com>wrote:

> Will do. My aplogies! -Greg
>
>
> On Fri, Oct 7, 2011 at 3:55 AM, Luc Maisonobe <luc.maison...@free.fr>wrote:
>
>> Le 07/10/2011 07:21, gr...@apache.org a écrit :
>>
>>  Author: gregs
>>> Date: Fri Oct  7 05:21:17 2011
>>> New Revision: 1179935
>>>
>>> URL: 
>>> http://svn.apache.org/viewvc?**rev=1179935&view=rev<http://svn.apache.org/viewvc?rev=1179935&view=rev>
>>> Log:
>>> JIRA Math-630 First push of PivotingQRDecomposition
>>>
>>> Added:
>>>     commons/proper/math/trunk/src/**main/java/org/apache/commons/**
>>> math/linear/**PivotingQRDecomposition.java
>>>     commons/proper/math/trunk/src/**test/java/org/apache/commons/**
>>> math/linear/**PivotingQRDecompositionTest.**java
>>>     commons/proper/math/trunk/src/**test/java/org/apache/commons/**
>>> math/linear/**PivotingQRSolverTest.java
>>>
>>
>> Hello Greg,
>>
>> It seems the files do not have the right subversion properties.
>> Could you check your global subversion settings and make sure [auto-props]
>> is set correctly ?
>>
>> Thanks
>> Luc
>>
>>
>>
>>> Added: commons/proper/math/trunk/src/**main/java/org/apache/commons/**
>>> math/linear/**PivotingQRDecomposition.java
>>> URL: http://svn.apache.org/viewvc/**commons/proper/math/trunk/src/**
>>> main/java/org/apache/commons/**math/linear/**
>>> PivotingQRDecomposition.java?**rev=1179935&view=auto<http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math/linear/PivotingQRDecomposition.java?rev=1179935&view=auto>
>>> ==============================**==============================**
>>> ==================
>>> --- commons/proper/math/trunk/src/**main/java/org/apache/commons/**
>>> math/linear/**PivotingQRDecomposition.java (added)
>>> +++ commons/proper/math/trunk/src/**main/java/org/apache/commons/**
>>> math/linear/**PivotingQRDecomposition.java Fri Oct  7 05:21:17 2011
>>> @@ -0,0 +1,421 @@
>>> +/*
>>> + * Copyright 2011 The Apache Software Foundation.
>>> + *
>>> + * Licensed under the Apache License, Version 2.0 (the "License");
>>> + * you may not use this file except in compliance with the License.
>>> + * You may obtain a copy of the License at
>>> + *
>>> + *      
>>> http://www.apache.org/**licenses/LICENSE-2.0<http://www.apache.org/licenses/LICENSE-2.0>
>>> + *
>>> + * Unless required by applicable law or agreed to in writing, software
>>> + * distributed under the License is distributed on an "AS IS" BASIS,
>>> + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
>>> implied.
>>> + * See the License for the specific language governing permissions and
>>> + * limitations under the License.
>>> + */
>>> +package org.apache.commons.math.**linear;
>>> +
>>> +import java.util.Arrays;
>>> +import org.apache.commons.math.util.**MathUtils;
>>> +import org.apache.commons.math.**ConvergenceException;
>>> +import org.apache.commons.math.**exception.**
>>> DimensionMismatchException;
>>> +import org.apache.commons.math.**exception.util.**LocalizedFormats;
>>> +import org.apache.commons.math.util.**FastMath;
>>> +
>>> +/**
>>> + *
>>> + * @author gregsterijevski
>>> + */
>>> +public class PivotingQRDecomposition {
>>> +
>>> +    private double[][] qr;
>>> +    /** The diagonal elements of R. */
>>> +    private double[] rDiag;
>>> +    /** Cached value of Q. */
>>> +    private RealMatrix cachedQ;
>>> +    /** Cached value of QT. */
>>> +    private RealMatrix cachedQT;
>>> +    /** Cached value of R. */
>>> +    private RealMatrix cachedR;
>>> +    /** Cached value of H. */
>>> +    private RealMatrix cachedH;
>>> +    /** permutation info */
>>> +    private int[] permutation;
>>> +    /** the rank **/
>>> +    private int rank;
>>> +    /** vector of column multipliers */
>>> +    private double[] beta;
>>> +
>>> +    public boolean isSingular() {
>>> +        return rank != qr[0].length;
>>> +    }
>>> +
>>> +    public int getRank() {
>>> +        return rank;
>>> +    }
>>> +
>>> +    public int[] getOrder() {
>>> +        return MathUtils.copyOf(permutation);
>>> +    }
>>> +
>>> +    public PivotingQRDecomposition(**RealMatrix matrix) throws
>>> ConvergenceException {
>>> +        this(matrix, 1.0e-16, true);
>>> +    }
>>> +
>>> +    public PivotingQRDecomposition(**RealMatrix matrix, boolean
>>> allowPivot) throws ConvergenceException {
>>> +        this(matrix, 1.0e-16, allowPivot);
>>> +    }
>>> +
>>> +    public PivotingQRDecomposition(**RealMatrix matrix, double
>>> qrRankingThreshold,
>>> +            boolean allowPivot) throws ConvergenceException {
>>> +        final int rows = matrix.getRowDimension();
>>> +        final int cols = matrix.getColumnDimension();
>>> +        qr = matrix.getData();
>>> +        rDiag = new double[cols];
>>> +        //final double[] norms = new double[cols];
>>> +        this.beta = new double[cols];
>>> +        this.permutation = new int[cols];
>>> +        cachedQ = null;
>>> +        cachedQT = null;
>>> +        cachedR = null;
>>> +        cachedH = null;
>>> +
>>> +        /*- initialize the permutation vector and calculate the norms */
>>> +        for (int k = 0; k<  cols; ++k) {
>>> +            permutation[k] = k;
>>> +        }
>>> +        // transform the matrix column after column
>>> +        for (int k = 0; k<  cols; ++k) {
>>> +            // select the column with the greatest norm on active
>>> components
>>> +            int nextColumn = -1;
>>> +            double ak2 = Double.NEGATIVE_INFINITY;
>>> +            if (allowPivot) {
>>> +                for (int i = k; i<  cols; ++i) {
>>> +                    double norm2 = 0;
>>> +                    for (int j = k; j<  rows; ++j) {
>>> +                        final double aki = qr[j][permutation[i]];
>>> +                        norm2 += aki * aki;
>>> +                    }
>>> +                    if (Double.isInfinite(norm2) || Double.isNaN(norm2))
>>> {
>>> +                        throw new ConvergenceException(**
>>> LocalizedFormats.UNABLE_TO_**PERFORM_QR_DECOMPOSITION_ON_**JACOBIAN,
>>> +                                rows, cols);
>>> +                    }
>>> +                    if (norm2>  ak2) {
>>> +                        nextColumn = i;
>>> +                        ak2 = norm2;
>>> +                    }
>>> +                }
>>> +            } else {
>>> +                nextColumn = k;
>>> +                ak2 = 0.0;
>>> +                for (int j = k; j<  rows; ++j) {
>>> +                    final double aki = qr[j][k];
>>> +                    ak2 += aki * aki;
>>> +                }
>>> +            }
>>> +            if (ak2<= qrRankingThreshold) {
>>> +                rank = k;
>>> +                for (int i = rank; i<  rows; i++) {
>>> +                    for (int j = i + 1; j<  cols; j++) {
>>> +                        qr[i][permutation[j]] = 0.0;
>>> +                    }
>>> +                }
>>> +                return;
>>> +            }
>>> +            final int pk = permutation[nextColumn];
>>> +            permutation[nextColumn] = permutation[k];
>>> +            permutation[k] = pk;
>>> +
>>> +            // choose alpha such that Hk.u = alpha ek
>>> +            final double akk = qr[k][pk];
>>> +            final double alpha = (akk>  0) ? -FastMath.sqrt(ak2) :
>>> FastMath.sqrt(ak2);
>>> +            final double betak = 1.0 / (ak2 - akk * alpha);
>>> +            beta[pk] = betak;
>>> +
>>> +            // transform the current column
>>> +            rDiag[pk] = alpha;
>>> +            qr[k][pk] -= alpha;
>>> +
>>> +            // transform the remaining columns
>>> +            for (int dk = cols - 1 - k; dk>  0; --dk) {
>>> +                double gamma = 0;
>>> +                for (int j = k; j<  rows; ++j) {
>>> +                    gamma += qr[j][pk] * qr[j][permutation[k + dk]];
>>> +                }
>>> +                gamma *= betak;
>>> +                for (int j = k; j<  rows; ++j) {
>>> +                    qr[j][permutation[k + dk]] -= gamma * qr[j][pk];
>>> +                }
>>> +            }
>>> +        }
>>> +        rank = cols;
>>> +        return;
>>> +    }
>>> +
>>> +    /**
>>> +     * Returns the matrix Q of the decomposition.
>>> +     *<p>Q is an orthogonal matrix</p>
>>> +     * @return the Q matrix
>>> +     */
>>> +    public RealMatrix getQ() {
>>> +        if (cachedQ == null) {
>>> +            cachedQ = getQT().transpose();
>>> +        }
>>> +        return cachedQ;
>>> +    }
>>> +
>>> +    /**
>>> +     * Returns the transpose of the matrix Q of the decomposition.
>>> +     *<p>Q is an orthogonal matrix</p>
>>> +     * @return the Q matrix
>>> +     */
>>> +    public RealMatrix getQT() {
>>> +        if (cachedQT == null) {
>>> +
>>> +            // QT is supposed to be m x m
>>> +            final int n = qr[0].length;
>>> +            final int m = qr.length;
>>> +            cachedQT = MatrixUtils.createRealMatrix(**m, m);
>>> +
>>> +            /*
>>> +             * Q = Q1 Q2 ... Q_m, so Q is formed by first constructing
>>> Q_m and then
>>> +             * applying the Householder transformations
>>> Q_(m-1),Q_(m-2),...,Q1 in
>>> +             * succession to the result
>>> +             */
>>> +            for (int minor = m - 1; minor>= rank; minor--) {
>>> +                cachedQT.setEntry(minor, minor, 1.0);
>>> +            }
>>> +
>>> +            for (int minor = rank - 1; minor>= 0; minor--) {
>>> +                //final double[] qrtMinor = qrt[minor];
>>> +                final int p_minor = permutation[minor];
>>> +                cachedQT.setEntry(minor, minor, 1.0);
>>> +                //if (qrtMinor[minor] != 0.0) {
>>> +                for (int col = minor; col<  m; col++) {
>>> +                    double alpha = 0.0;
>>> +                    for (int row = minor; row<  m; row++) {
>>> +                        alpha -= cachedQT.getEntry(col, row) *
>>> qr[row][p_minor];
>>> +                    }
>>> +                    alpha /= rDiag[p_minor] * qr[minor][p_minor];
>>> +                    for (int row = minor; row<  m; row++) {
>>> +                        cachedQT.addToEntry(col, row, -alpha *
>>> qr[row][p_minor]);
>>> +                    }
>>> +                }
>>> +                //}
>>> +            }
>>> +        }
>>> +        // return the cached matrix
>>> +        return cachedQT;
>>> +    }
>>> +
>>> +    /**
>>> +     * Returns the matrix R of the decomposition.
>>> +     *<p>R is an upper-triangular matrix</p>
>>> +     * @return the R matrix
>>> +     */
>>> +    public RealMatrix getR() {
>>> +        if (cachedR == null) {
>>> +            // R is supposed to be m x n
>>> +            final int n = qr[0].length;
>>> +            final int m = qr.length;
>>> +            cachedR = MatrixUtils.createRealMatrix(**m, n);
>>> +            // copy the diagonal from rDiag and the upper triangle of qr
>>> +            for (int row = rank - 1; row>= 0; row--) {
>>> +                cachedR.setEntry(row, row, rDiag[permutation[row]]);
>>> +                for (int col = row + 1; col<  n; col++) {
>>> +                    cachedR.setEntry(row, col,
>>> qr[row][permutation[col]]);
>>> +                }
>>> +            }
>>> +        }
>>> +        // return the cached matrix
>>> +        return cachedR;
>>> +    }
>>> +
>>> +    public RealMatrix getH() {
>>> +        if (cachedH == null) {
>>> +            final int n = qr[0].length;
>>> +            final int m = qr.length;
>>> +            cachedH = MatrixUtils.createRealMatrix(**m, n);
>>> +            for (int i = 0; i<  m; ++i) {
>>> +                for (int j = 0; j<  FastMath.min(i + 1, n); ++j) {
>>> +                    final int p_j = permutation[j];
>>> +                    cachedH.setEntry(i, j, qr[i][p_j] / -rDiag[p_j]);
>>> +                }
>>> +            }
>>> +        }
>>> +        // return the cached matrix
>>> +        return cachedH;
>>> +    }
>>> +
>>> +    public RealMatrix getPermutationMatrix() {
>>> +        RealMatrix rm = MatrixUtils.createRealMatrix(**qr[0].length,
>>> qr[0].length);
>>> +        for (int i = 0; i<  this.qr[0].length; i++) {
>>> +            rm.setEntry(permutation[i], i, 1.0);
>>> +        }
>>> +        return rm;
>>> +    }
>>> +
>>> +    public DecompositionSolver getSolver() {
>>> +        return new Solver(qr, rDiag, permutation, rank);
>>> +    }
>>> +
>>> +    /** Specialized solver. */
>>> +    private static class Solver implements DecompositionSolver {
>>> +
>>> +        /**
>>> +         * A packed TRANSPOSED representation of the QR decomposition.
>>> +         *<p>The elements BELOW the diagonal are the elements of the
>>> UPPER triangular
>>> +         * matrix R, and the rows ABOVE the diagonal are the Householder
>>> reflector vectors
>>> +         * from which an explicit form of Q can be recomputed if
>>> desired.</p>
>>> +         */
>>> +        private final double[][] qr;
>>> +        /** The diagonal elements of R. */
>>> +        private final double[] rDiag;
>>> +        /** The rank of the matrix      */
>>> +        private final int rank;
>>> +        /** The permutation matrix      */
>>> +        private final int[] perm;
>>> +
>>> +        /**
>>> +         * Build a solver from decomposed matrix.
>>> +         * @param qrt packed TRANSPOSED representation of the QR
>>> decomposition
>>> +         * @param rDiag diagonal elements of R
>>> +         */
>>> +        private Solver(final double[][] qr, final double[] rDiag, int[]
>>> perm, int rank) {
>>> +            this.qr = qr;
>>> +            this.rDiag = rDiag;
>>> +            this.perm = perm;
>>> +            this.rank = rank;
>>> +        }
>>> +
>>> +        /** {@inheritDoc} */
>>> +        public boolean isNonSingular() {
>>> +            if (qr.length>= qr[0].length) {
>>> +                return rank == qr[0].length;
>>> +            } else { //qr.length<  qr[0].length
>>> +                return rank == qr.length;
>>> +            }
>>> +        }
>>> +
>>> +        /** {@inheritDoc} */
>>> +        public RealVector solve(RealVector b) {
>>> +            final int n = qr[0].length;
>>> +            final int m = qr.length;
>>> +            if (b.getDimension() != m) {
>>> +                throw new DimensionMismatchException(b.**getDimension(),
>>> m);
>>> +            }
>>> +            if (!isNonSingular()) {
>>> +                throw new SingularMatrixException();
>>> +            }
>>> +
>>> +            final double[] x = new double[n];
>>> +            final double[] y = b.toArray();
>>> +
>>> +            // apply Householder transforms to solve Q.y = b
>>> +            for (int minor = 0; minor<  rank; minor++) {
>>> +                final int m_idx = perm[minor];
>>> +                double dotProduct = 0;
>>> +                for (int row = minor; row<  m; row++) {
>>> +                    dotProduct += y[row] * qr[row][m_idx];
>>> +                }
>>> +                dotProduct /= rDiag[m_idx] * qr[minor][m_idx];
>>> +                for (int row = minor; row<  m; row++) {
>>> +                    y[row] += dotProduct * qr[row][m_idx];
>>> +                }
>>> +            }
>>> +            // solve triangular system R.x = y
>>> +            for (int row = rank - 1; row>= 0; --row) {
>>> +                final int m_row = perm[row];
>>> +                y[row] /= rDiag[m_row];
>>> +                final double yRow = y[row];
>>> +                //final double[] qrtRow = qrt[row];
>>> +                x[perm[row]] = yRow;
>>> +                for (int i = 0; i<  row; i++) {
>>> +                    y[i] -= yRow * qr[i][m_row];
>>> +                }
>>> +            }
>>> +            return new ArrayRealVector(x, false);
>>> +        }
>>> +
>>> +        /** {@inheritDoc} */
>>> +        public RealMatrix solve(RealMatrix b) {
>>> +            final int cols = qr[0].length;
>>> +            final int rows = qr.length;
>>> +            if (b.getRowDimension() != rows) {
>>> +                throw new DimensionMismatchException(b.**getRowDimension(),
>>> rows);
>>> +            }
>>> +            if (!isNonSingular()) {
>>> +                throw new SingularMatrixException();
>>> +            }
>>> +
>>> +            final int columns = b.getColumnDimension();
>>> +            final int blockSize = BlockRealMatrix.BLOCK_SIZE;
>>> +            final int cBlocks = (columns + blockSize - 1) / blockSize;
>>> +            final double[][] xBlocks = 
>>> BlockRealMatrix.**createBlocksLayout(cols,
>>> columns);
>>> +            final double[][] y = new double[b.getRowDimension()][**
>>> blockSize];
>>> +            final double[] alpha = new double[blockSize];
>>> +            //final BlockRealMatrix result = new BlockRealMatrix(cols,
>>> columns, xBlocks, false);
>>> +            for (int kBlock = 0; kBlock<  cBlocks; ++kBlock) {
>>> +                final int kStart = kBlock * blockSize;
>>> +                final int kEnd = FastMath.min(kStart + blockSize,
>>> columns);
>>> +                final int kWidth = kEnd - kStart;
>>> +                // get the right hand side vector
>>> +                b.copySubMatrix(0, rows - 1, kStart, kEnd - 1, y);
>>> +
>>> +                // apply Householder transforms to solve Q.y = b
>>> +                for (int minor = 0; minor<  rank; minor++) {
>>> +                    final int m_idx = perm[minor];
>>> +                    final double factor = 1.0 / (rDiag[m_idx] *
>>> qr[minor][m_idx]);
>>> +
>>> +                    Arrays.fill(alpha, 0, kWidth, 0.0);
>>> +                    for (int row = minor; row<  rows; ++row) {
>>> +                        final double d = qr[row][m_idx];
>>> +                        final double[] yRow = y[row];
>>> +                        for (int k = 0; k<  kWidth; ++k) {
>>> +                            alpha[k] += d * yRow[k];
>>> +                        }
>>> +                    }
>>> +                    for (int k = 0; k<  kWidth; ++k) {
>>> +                        alpha[k] *= factor;
>>> +                    }
>>> +
>>> +                    for (int row = minor; row<  rows; ++row) {
>>> +                        final double d = qr[row][m_idx];
>>> +                        final double[] yRow = y[row];
>>> +                        for (int k = 0; k<  kWidth; ++k) {
>>> +                            yRow[k] += alpha[k] * d;
>>> +                        }
>>> +                    }
>>> +                }
>>> +
>>> +                // solve triangular system R.x = y
>>> +                for (int j = rank - 1; j>= 0; --j) {
>>> +                    final int jBlock = perm[j] / blockSize; //which
>>> block
>>> +                    final int jStart = jBlock * blockSize;  // idx of
>>> top corner of block in my coord
>>> +                    final double factor = 1.0 / rDiag[perm[j]];
>>> +                    final double[] yJ = y[j];
>>> +                    final double[] xBlock = xBlocks[jBlock * cBlocks +
>>> kBlock];
>>> +                    int index = (perm[j] - jStart) * kWidth; //to local
>>> (block) coordinates
>>> +                    for (int k = 0; k<  kWidth; ++k) {
>>> +                        yJ[k] *= factor;
>>> +                        xBlock[index++] = yJ[k];
>>> +                    }
>>> +                    for (int i = 0; i<  j; ++i) {
>>> +                        final double rIJ = qr[i][perm[j]];
>>> +                        final double[] yI = y[i];
>>> +                        for (int k = 0; k<  kWidth; ++k) {
>>> +                            yI[k] -= yJ[k] * rIJ;
>>> +                        }
>>> +                    }
>>> +                }
>>> +            }
>>> +            //return result;
>>> +            return new BlockRealMatrix(cols, columns, xBlocks, false);
>>> +        }
>>> +
>>> +        /** {@inheritDoc} */
>>> +        public RealMatrix getInverse() {
>>> +            return solve(MatrixUtils.**createRealIdentityMatrix(**
>>> rDiag.length));
>>> +        }
>>> +    }
>>> +}
>>>
>>> Added: commons/proper/math/trunk/src/**test/java/org/apache/commons/**
>>> math/linear/**PivotingQRDecompositionTest.**java
>>> URL: http://svn.apache.org/viewvc/**commons/proper/math/trunk/src/**
>>> test/java/org/apache/commons/**math/linear/**
>>> PivotingQRDecompositionTest.**java?rev=1179935&view=auto<http://svn.apache.org/viewvc/commons/proper/math/trunk/src/test/java/org/apache/commons/math/linear/PivotingQRDecompositionTest.java?rev=1179935&view=auto>
>>> ==============================**==============================**
>>> ==================
>>> --- commons/proper/math/trunk/src/**test/java/org/apache/commons/**
>>> math/linear/**PivotingQRDecompositionTest.**java (added)
>>> +++ commons/proper/math/trunk/src/**test/java/org/apache/commons/**
>>> math/linear/**PivotingQRDecompositionTest.**java Fri Oct  7 05:21:17
>>> 2011
>>> @@ -0,0 +1,257 @@
>>> +/*
>>> + * Licensed to the Apache Software Foundation (ASF) under one or more
>>> + * contributor license agreements.  See the NOTICE file distributed with
>>> + * this work for additional information regarding copyright ownership.
>>> + * The ASF licenses this file to You under the Apache License, Version
>>> 2.0
>>> + * (the "License"); you may not use this file except in compliance with
>>> + * the License.  You may obtain a copy of the License at
>>> + *
>>> + *      
>>> http://www.apache.org/**licenses/LICENSE-2.0<http://www.apache.org/licenses/LICENSE-2.0>
>>> + *
>>> + * Unless required by applicable law or agreed to in writing, software
>>> + * distributed under the License is distributed on an "AS IS" BASIS,
>>> + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
>>> implied.
>>> + * See the License for the specific language governing permissions and
>>> + * limitations under the License.
>>> + */
>>> +
>>> +package org.apache.commons.math.**linear;
>>> +
>>> +import java.util.Random;
>>> +
>>> +
>>> +import org.apache.commons.math.**ConvergenceException;
>>> +import org.junit.Assert;
>>> +import org.junit.Test;
>>> +
>>> +
>>> +public class PivotingQRDecompositionTest {
>>> +    double[][] testData3x3NonSingular = {
>>> +            { 12, -51, 4 },
>>> +            { 6, 167, -68 },
>>> +            { -4, 24, -41 }, };
>>> +
>>> +    double[][] testData3x3Singular = {
>>> +            { 1, 4, 7, },
>>> +            { 2, 5, 8, },
>>> +            { 3, 6, 9, }, };
>>> +
>>> +    double[][] testData3x4 = {
>>> +            { 12, -51, 4, 1 },
>>> +            { 6, 167, -68, 2 },
>>> +            { -4, 24, -41, 3 }, };
>>> +
>>> +    double[][] testData4x3 = {
>>> +            { 12, -51, 4, },
>>> +            { 6, 167, -68, },
>>> +            { -4, 24, -41, },
>>> +            { -5, 34, 7, }, };
>>> +
>>> +    private static final double entryTolerance = 10e-16;
>>> +
>>> +    private static final double normTolerance = 10e-14;
>>> +
>>> +    /** test dimensions */
>>> +    @Test
>>> +    public void testDimensions() throws ConvergenceException {
>>> +        checkDimension(MatrixUtils.**createRealMatrix(**
>>> testData3x3NonSingular));
>>> +
>>> +        checkDimension(MatrixUtils.**createRealMatrix(testData4x3))**;
>>> +
>>> +        checkDimension(MatrixUtils.**createRealMatrix(testData3x4))**;
>>> +
>>> +        Random r = new Random(643895747384642l);
>>> +        int    p = (5 * BlockRealMatrix.BLOCK_SIZE) / 4;
>>> +        int    q = (7 * BlockRealMatrix.BLOCK_SIZE) / 4;
>>> +        checkDimension(**createTestMatrix(r, p, q));
>>> +        checkDimension(**createTestMatrix(r, q, p));
>>> +
>>> +    }
>>> +
>>> +    private void checkDimension(RealMatrix m) throws
>>> ConvergenceException {
>>> +        int rows = m.getRowDimension();
>>> +        int columns = m.getColumnDimension();
>>> +        PivotingQRDecomposition qr = new PivotingQRDecomposition(m);
>>> +        Assert.assertEquals(rows,    qr.getQ().getRowDimension());
>>> +        Assert.assertEquals(rows,    qr.getQ().getColumnDimension()**);
>>> +        Assert.assertEquals(rows,    qr.getR().getRowDimension());
>>> +        Assert.assertEquals(columns, qr.getR().getColumnDimension()**);
>>> +    }
>>> +
>>> +    /** test A = QR */
>>> +    @Test
>>> +    public void testAEqualQR() throws ConvergenceException {
>>> +        checkAEqualQR(MatrixUtils.**createRealMatrix(**
>>> testData3x3NonSingular));
>>> +
>>> +        checkAEqualQR(MatrixUtils.**createRealMatrix(**
>>> testData3x3Singular));
>>> +
>>> +        checkAEqualQR(MatrixUtils.**createRealMatrix(testData3x4))**;
>>> +
>>> +        checkAEqualQR(MatrixUtils.**createRealMatrix(testData4x3))**;
>>> +
>>> +        Random r = new Random(643895747384642l);
>>> +        int    p = (5 * BlockRealMatrix.BLOCK_SIZE) / 4;
>>> +        int    q = (7 * BlockRealMatrix.BLOCK_SIZE) / 4;
>>> +        checkAEqualQR(**createTestMatrix(r, p, q));
>>> +
>>> +        checkAEqualQR(**createTestMatrix(r, q, p));
>>> +
>>> +    }
>>> +
>>> +    private void checkAEqualQR(RealMatrix m) throws ConvergenceException
>>> {
>>> +        PivotingQRDecomposition qr = new PivotingQRDecomposition(m);
>>> +        RealMatrix prod =  qr.getQ().multiply(qr.getR()).**multiply(qr.
>>> **getPermutationMatrix().**transpose());
>>> +        double norm = prod.subtract(m).getNorm();
>>> +        Assert.assertEquals(0, norm, normTolerance);
>>> +    }
>>> +
>>> +    /** test the orthogonality of Q */
>>> +    @Test
>>> +    public void testQOrthogonal() throws ConvergenceException{
>>> +        checkQOrthogonal(MatrixUtils.**createRealMatrix(**
>>> testData3x3NonSingular));
>>> +
>>> +        checkQOrthogonal(MatrixUtils.**createRealMatrix(**
>>> testData3x3Singular));
>>> +
>>> +        checkQOrthogonal(MatrixUtils.**createRealMatrix(testData3x4))**
>>> ;
>>> +
>>> +        checkQOrthogonal(MatrixUtils.**createRealMatrix(testData4x3))**
>>> ;
>>> +
>>> +        Random r = new Random(643895747384642l);
>>> +        int    p = (5 * BlockRealMatrix.BLOCK_SIZE) / 4;
>>> +        int    q = (7 * BlockRealMatrix.BLOCK_SIZE) / 4;
>>> +        checkQOrthogonal(**createTestMatrix(r, p, q));
>>> +
>>> +        checkQOrthogonal(**createTestMatrix(r, q, p));
>>> +
>>> +    }
>>> +
>>> +    private void checkQOrthogonal(RealMatrix m) throws
>>> ConvergenceException{
>>> +        PivotingQRDecomposition qr = new PivotingQRDecomposition(m);
>>> +        RealMatrix eye = MatrixUtils.**createRealIdentityMatrix(m.**
>>> getRowDimension());
>>> +        double norm = qr.getQT().multiply(qr.getQ())**
>>> .subtract(eye).getNorm();
>>> +        Assert.assertEquals(0, norm, normTolerance);
>>> +    }
>>> +//
>>> +    /** test that R is upper triangular */
>>> +    @Test
>>> +    public void testRUpperTriangular() throws ConvergenceException{
>>> +        RealMatrix matrix = MatrixUtils.createRealMatrix(**
>>> testData3x3NonSingular);
>>> +        checkUpperTriangular(new PivotingQRDecomposition(**
>>> matrix).getR());
>>> +
>>> +        matrix = MatrixUtils.createRealMatrix(**testData3x3Singular);
>>> +        checkUpperTriangular(new PivotingQRDecomposition(**
>>> matrix).getR());
>>> +
>>> +        matrix = MatrixUtils.createRealMatrix(**testData3x4);
>>> +        checkUpperTriangular(new PivotingQRDecomposition(**
>>> matrix).getR());
>>> +
>>> +        matrix = MatrixUtils.createRealMatrix(**testData4x3);
>>> +        checkUpperTriangular(new PivotingQRDecomposition(**
>>> matrix).getR());
>>> +
>>> +        Random r = new Random(643895747384642l);
>>> +        int    p = (5 * BlockRealMatrix.BLOCK_SIZE) / 4;
>>> +        int    q = (7 * BlockRealMatrix.BLOCK_SIZE) / 4;
>>> +        matrix = createTestMatrix(r, p, q);
>>> +        checkUpperTriangular(new PivotingQRDecomposition(**
>>> matrix).getR());
>>> +
>>> +        matrix = createTestMatrix(r, p, q);
>>> +        checkUpperTriangular(new PivotingQRDecomposition(**
>>> matrix).getR());
>>> +
>>> +    }
>>> +
>>> +    private void checkUpperTriangular(**RealMatrix m) {
>>> +        m.walkInOptimizedOrder(new DefaultRealMatrixPreservingVis**itor()
>>> {
>>> +            @Override
>>> +            public void visit(int row, int column, double value) {
>>> +                if (column<  row) {
>>> +                    Assert.assertEquals(0.0, value, entryTolerance);
>>> +                }
>>> +            }
>>> +        });
>>> +    }
>>> +
>>> +    /** test that H is trapezoidal */
>>> +    @Test
>>> +    public void testHTrapezoidal() throws ConvergenceException{
>>> +        RealMatrix matrix = MatrixUtils.createRealMatrix(**
>>> testData3x3NonSingular);
>>> +        checkTrapezoidal(new PivotingQRDecomposition(**matrix).getH());
>>> +
>>> +        matrix = MatrixUtils.createRealMatrix(**testData3x3Singular);
>>> +        checkTrapezoidal(new PivotingQRDecomposition(**matrix).getH());
>>> +
>>> +        matrix = MatrixUtils.createRealMatrix(**testData3x4);
>>> +        checkTrapezoidal(new PivotingQRDecomposition(**matrix).getH());
>>> +
>>> +        matrix = MatrixUtils.createRealMatrix(**testData4x3);
>>> +        checkTrapezoidal(new PivotingQRDecomposition(**matrix).getH());
>>> +
>>> +        Random r = new Random(643895747384642l);
>>> +        int    p = (5 * BlockRealMatrix.BLOCK_SIZE) / 4;
>>> +        int    q = (7 * BlockRealMatrix.BLOCK_SIZE) / 4;
>>> +        matrix = createTestMatrix(r, p, q);
>>> +        checkTrapezoidal(new PivotingQRDecomposition(**matrix).getH());
>>> +
>>> +        matrix = createTestMatrix(r, p, q);
>>> +        checkTrapezoidal(new PivotingQRDecomposition(**matrix).getH());
>>> +
>>> +    }
>>> +
>>> +    private void checkTrapezoidal(RealMatrix m) {
>>> +        m.walkInOptimizedOrder(new DefaultRealMatrixPreservingVis**itor()
>>> {
>>> +            @Override
>>> +            public void visit(int row, int column, double value) {
>>> +                if (column>  row) {
>>> +                    Assert.assertEquals(0.0, value, entryTolerance);
>>> +                }
>>> +            }
>>> +        });
>>> +    }
>>> +    /** test matrices values */
>>> +    @Test
>>> +    public void testMatricesValues() throws ConvergenceException{
>>> +        PivotingQRDecomposition qr =
>>> +            new PivotingQRDecomposition(**MatrixUtils.createRealMatrix(
>>> **testData3x3NonSingular),false)**;
>>> +        RealMatrix qRef = MatrixUtils.createRealMatrix(**new double[][]
>>> {
>>> +                { -12.0 / 14.0,   69.0 / 175.0,  -58.0 / 175.0 },
>>> +                {  -6.0 / 14.0, -158.0 / 175.0,    6.0 / 175.0 },
>>> +                {   4.0 / 14.0,  -30.0 / 175.0, -165.0 / 175.0 }
>>> +        });
>>> +        RealMatrix rRef = MatrixUtils.createRealMatrix(**new double[][]
>>> {
>>> +                { -14.0,  -21.0, 14.0 },
>>> +                {   0.0, -175.0, 70.0 },
>>> +                {   0.0,    0.0, 35.0 }
>>> +        });
>>> +        RealMatrix hRef = MatrixUtils.createRealMatrix(**new double[][]
>>> {
>>> +                { 26.0 / 14.0, 0.0, 0.0 },
>>> +                {  6.0 / 14.0, 648.0 / 325.0, 0.0 },
>>> +                { -4.0 / 14.0,  36.0 / 325.0, 2.0 }
>>> +        });
>>> +
>>> +        // check values against known references
>>> +        RealMatrix q = qr.getQ();
>>> +        Assert.assertEquals(0, q.subtract(qRef).getNorm(), 1.0e-13);
>>> +        RealMatrix qT = qr.getQT();
>>> +        Assert.assertEquals(0, qT.subtract(qRef.transpose()).**getNorm(),
>>> 1.0e-13);
>>> +        RealMatrix r = qr.getR();
>>> +        Assert.assertEquals(0, r.subtract(rRef).getNorm(), 1.0e-13);
>>> +        RealMatrix h = qr.getH();
>>> +        Assert.assertEquals(0, h.subtract(hRef).getNorm(), 1.0e-13);
>>> +
>>> +        // check the same cached instance is returned the second time
>>> +        Assert.assertTrue(q == qr.getQ());
>>> +        Assert.assertTrue(r == qr.getR());
>>> +        Assert.assertTrue(h == qr.getH());
>>> +
>>> +    }
>>> +
>>> +    private RealMatrix createTestMatrix(final Random r, final int rows,
>>> final int columns) {
>>> +        RealMatrix m = MatrixUtils.createRealMatrix(**rows, columns);
>>> +        m.walkInOptimizedOrder(new DefaultRealMatrixChangingVisit**
>>> or(){
>>> +            @Override
>>> +            public double visit(int row, int column, double value) {
>>> +                return 2.0 * r.nextDouble() - 1.0;
>>> +            }
>>> +        });
>>> +        return m;
>>> +    }
>>> +
>>> +}
>>>
>>> Added: commons/proper/math/trunk/src/**test/java/org/apache/commons/**
>>> math/linear/**PivotingQRSolverTest.java
>>> URL: http://svn.apache.org/viewvc/**commons/proper/math/trunk/src/**
>>> test/java/org/apache/commons/**math/linear/**
>>> PivotingQRSolverTest.java?rev=**1179935&view=auto<http://svn.apache.org/viewvc/commons/proper/math/trunk/src/test/java/org/apache/commons/math/linear/PivotingQRSolverTest.java?rev=1179935&view=auto>
>>> ==============================**==============================**
>>> ==================
>>> --- commons/proper/math/trunk/src/**test/java/org/apache/commons/**
>>> math/linear/**PivotingQRSolverTest.java (added)
>>> +++ commons/proper/math/trunk/src/**test/java/org/apache/commons/**
>>> math/linear/**PivotingQRSolverTest.java Fri Oct  7 05:21:17 2011
>>> @@ -0,0 +1,201 @@
>>> +/*
>>> + * Licensed to the Apache Software Foundation (ASF) under one or more
>>> + * contributor license agreements.  See the NOTICE file distributed with
>>> + * this work for additional information regarding copyright ownership.
>>> + * The ASF licenses this file to You under the Apache License, Version
>>> 2.0
>>> + * (the "License"); you may not use this file except in compliance with
>>> + * the License.  You may obtain a copy of the License at
>>> + *
>>> + *      
>>> http://www.apache.org/**licenses/LICENSE-2.0<http://www.apache.org/licenses/LICENSE-2.0>
>>> + *
>>> + * Unless required by applicable law or agreed to in writing, software
>>> + * distributed under the License is distributed on an "AS IS" BASIS,
>>> + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
>>> implied.
>>> + * See the License for the specific language governing permissions and
>>> + * limitations under the License.
>>> + */
>>> +
>>> +package org.apache.commons.math.**linear;
>>> +
>>> +import java.util.Random;
>>> +
>>> +import org.apache.commons.math.**ConvergenceException;
>>> +import org.apache.commons.math.**exception.**
>>> MathIllegalArgumentException;
>>> +
>>> +import org.junit.Test;
>>> +import org.junit.Assert;
>>> +
>>> +public class PivotingQRSolverTest {
>>> +    double[][] testData3x3NonSingular = {
>>> +            { 12, -51,   4 },
>>> +            {  6, 167, -68 },
>>> +            { -4,  24, -41 }
>>> +    };
>>> +
>>> +    double[][] testData3x3Singular = {
>>> +            { 1, 2,  2 },
>>> +            { 2, 4,  6 },
>>> +            { 4, 8, 12 }
>>> +    };
>>> +
>>> +    double[][] testData3x4 = {
>>> +            { 12, -51,   4, 1 },
>>> +            {  6, 167, -68, 2 },
>>> +            { -4,  24, -41, 3 }
>>> +    };
>>> +
>>> +    double[][] testData4x3 = {
>>> +            { 12, -51,   4 },
>>> +            {  6, 167, -68 },
>>> +            { -4,  24, -41 },
>>> +            { -5,  34,   7 }
>>> +    };
>>> +
>>> +    /** test rank */
>>> +    @Test
>>> +    public void testRank() throws ConvergenceException {
>>> +        DecompositionSolver solver =
>>> +            new PivotingQRDecomposition(**MatrixUtils.createRealMatrix(
>>> **testData3x3NonSingular)).**getSolver();
>>> +        Assert.assertTrue(solver.**isNonSingular());
>>> +
>>> +        solver = new PivotingQRDecomposition(**
>>> MatrixUtils.createRealMatrix(**testData3x3Singular)).**getSolver();
>>> +        Assert.assertFalse(solver.**isNonSingular());
>>> +
>>> +        solver = new PivotingQRDecomposition(**
>>> MatrixUtils.createRealMatrix(**testData3x4)).getSolver();
>>> +        Assert.assertTrue(solver.**isNonSingular());
>>> +
>>> +        solver = new PivotingQRDecomposition(**
>>> MatrixUtils.createRealMatrix(**testData4x3)).getSolver();
>>> +        Assert.assertTrue(solver.**isNonSingular());
>>> +
>>> +    }
>>> +
>>> +    /** test solve dimension errors */
>>> +    @Test
>>> +    public void testSolveDimensionErrors() throws ConvergenceException {
>>> +        DecompositionSolver solver =
>>> +            new PivotingQRDecomposition(**MatrixUtils.createRealMatrix(
>>> **testData3x3NonSingular)).**getSolver();
>>> +        RealMatrix b = MatrixUtils.createRealMatrix(**new
>>> double[2][2]);
>>> +        try {
>>> +            solver.solve(b);
>>> +            Assert.fail("an exception should have been thrown");
>>> +        } catch (MathIllegalArgumentException iae) {
>>> +            // expected behavior
>>> +        }
>>> +        try {
>>> +            solver.solve(b.**getColumnVector(0));
>>> +            Assert.fail("an exception should have been thrown");
>>> +        } catch (MathIllegalArgumentException iae) {
>>> +            // expected behavior
>>> +        }
>>> +    }
>>> +
>>> +    /** test solve rank errors */
>>> +    @Test
>>> +    public void testSolveRankErrors() throws ConvergenceException {
>>> +        DecompositionSolver solver =
>>> +            new PivotingQRDecomposition(**MatrixUtils.createRealMatrix(
>>> **testData3x3Singular)).**getSolver();
>>> +        RealMatrix b = MatrixUtils.createRealMatrix(**new
>>> double[3][2]);
>>> +        try {
>>> +            solver.solve(b);
>>> +            Assert.fail("an exception should have been thrown");
>>> +        } catch (SingularMatrixException iae) {
>>> +            // expected behavior
>>> +        }
>>> +        try {
>>> +            solver.solve(b.**getColumnVector(0));
>>> +            Assert.fail("an exception should have been thrown");
>>> +        } catch (SingularMatrixException iae) {
>>> +            // expected behavior
>>> +        }
>>> +    }
>>> +
>>> +    /** test solve */
>>> +    @Test
>>> +    public void testSolve() throws ConvergenceException {
>>> +        PivotingQRDecomposition decomposition =
>>> +            new PivotingQRDecomposition(**MatrixUtils.createRealMatrix(
>>> **testData3x3NonSingular));
>>> +        DecompositionSolver solver = decomposition.getSolver();
>>> +        RealMatrix b = MatrixUtils.createRealMatrix(**new double[][] {
>>> +                { -102, 12250 }, { 544, 24500 }, { 167, -36750 }
>>> +        });
>>> +
>>> +        RealMatrix xRef = MatrixUtils.createRealMatrix(**new double[][]
>>> {
>>> +                { 1, 2515 }, { 2, 422 }, { -3, 898 }
>>> +        });
>>> +
>>> +        // using RealMatrix
>>> +        Assert.assertEquals(0, solver.solve(b).subtract(xRef)**.getNorm(),
>>> 2.0e-14 * xRef.getNorm());
>>> +
>>> +        // using ArrayRealVector
>>> +        for (int i = 0; i<  b.getColumnDimension(); ++i) {
>>> +            final RealVector x = solver.solve(b.**getColumnVector(i));
>>> +            final double error = x.subtract(xRef.**
>>> getColumnVector(i)).getNorm();
>>> +            Assert.assertEquals(0, error, 3.0e-14 *
>>> xRef.getColumnVector(i).**getNorm());
>>> +        }
>>> +
>>> +        // using RealVector with an alternate implementation
>>> +        for (int i = 0; i<  b.getColumnDimension(); ++i) {
>>> +            ArrayRealVectorTest.**RealVectorTestImpl v =
>>> +                new ArrayRealVectorTest.**RealVectorTestImpl(b.**
>>> getColumn(i));
>>> +            final RealVector x = solver.solve(v);
>>> +            final double error = x.subtract(xRef.**
>>> getColumnVector(i)).getNorm();
>>> +            Assert.assertEquals(0, error, 3.0e-14 *
>>> xRef.getColumnVector(i).**getNorm());
>>> +        }
>>> +
>>> +    }
>>> +
>>> +    @Test
>>> +    public void testOverdetermined() throws ConvergenceException {
>>> +        final Random r    = new Random(5559252868205245l);
>>> +        int          p    = (7 * BlockRealMatrix.BLOCK_SIZE) / 4;
>>> +        int          q    = (5 * BlockRealMatrix.BLOCK_SIZE) / 4;
>>> +        RealMatrix   a    = createTestMatrix(r, p, q);
>>> +        RealMatrix   xRef = createTestMatrix(r, q,
>>> BlockRealMatrix.BLOCK_SIZE + 3);
>>> +
>>> +        // build a perturbed system: A.X + noise = B
>>> +        RealMatrix b = a.multiply(xRef);
>>> +        final double noise = 0.001;
>>> +        b.walkInOptimizedOrder(new DefaultRealMatrixChangingVisit**or()
>>> {
>>> +            @Override
>>> +            public double visit(int row, int column, double value) {
>>> +                return value * (1.0 + noise * (2 * r.nextDouble() - 1));
>>> +            }
>>> +        });
>>> +
>>> +        // despite perturbation, the least square solution should be
>>> pretty good
>>> +        RealMatrix x = new PivotingQRDecomposition(a).**
>>> getSolver().solve(b);
>>> +        Assert.assertEquals(0, x.subtract(xRef).getNorm(), 0.01 * noise
>>> * p * q);
>>> +
>>> +    }
>>> +
>>> +    @Test
>>> +    public void testUnderdetermined() throws ConvergenceException {
>>> +        final Random r    = new Random(42185006424567123l);
>>> +        int          p    = (5 * BlockRealMatrix.BLOCK_SIZE) / 4;
>>> +        int          q    = (7 * BlockRealMatrix.BLOCK_SIZE) / 4;
>>> +        RealMatrix   a    = createTestMatrix(r, p, q);
>>> +        RealMatrix   xRef = createTestMatrix(r, q,
>>> BlockRealMatrix.BLOCK_SIZE + 3);
>>> +        RealMatrix   b    = a.multiply(xRef);
>>> +        PivotingQRDecomposition pqr = new PivotingQRDecomposition(a);
>>> +        RealMatrix   x = pqr.getSolver().solve(b);
>>> +        Assert.assertTrue(x.subtract(**xRef).getNorm() / (p * q)>
>>>  0.01);
>>> +        int count=0;
>>> +        for( int i = 0 ; i<  q; i++){
>>> +            if(  x.getRowVector(i).getNorm() == 0.0 ){
>>> +                ++count;
>>> +            }
>>> +        }
>>> +        Assert.assertEquals("Zeroed rows", q-p, count);
>>> +    }
>>> +
>>> +    private RealMatrix createTestMatrix(final Random r, final int rows,
>>> final int columns) {
>>> +        RealMatrix m = MatrixUtils.createRealMatrix(**rows, columns);
>>> +        m.walkInOptimizedOrder(new DefaultRealMatrixChangingVisit**or()
>>> {
>>> +                @Override
>>> +                    public double visit(int row, int column, double
>>> value) {
>>> +                    return 2.0 * r.nextDouble() - 1.0;
>>> +                }
>>> +            });
>>> +        return m;
>>> +    }
>>> +}
>>>
>>>
>>>
>>>
>>
>> ------------------------------**------------------------------**---------
>> To unsubscribe, e-mail: 
>> dev-unsubscribe@commons.**apache.org<dev-unsubscr...@commons.apache.org>
>> For additional commands, e-mail: dev-h...@commons.apache.org
>>
>>
>

Reply via email to