Package: src:python-sparse
Version: 0.16.0a9-1
Severity: serious
Tags: ftbfs forky sid

Dear maintainer:

During a rebuild of all packages in unstable, this package failed to build.

Below you will find the last part of the build log (probably the most
relevant part, but not necessarily). If required, the full build log
is available here:

https://people.debian.org/~sanvila/build-logs/202512/

About the archive rebuild: The build was made on virtual machines from AWS,
using sbuild and a reduced chroot with only build-essential packages.

If you cannot reproduce the bug please contact me privately, as I
am willing to provide ssh access to a virtual machine where the bug is
fully reproducible.

If this is really a bug in one of the build-depends, please use
reassign and add an affects on src:python-sparse, so that this is still
visible in the BTS web page for this package.

Thanks.

--------------------------------------------------------------------------------
[...]
 debian/rules clean
dh clean --buildsystem=pybuild --test-pytest
   dh_auto_clean -O--buildsystem=pybuild -O--test-pytest
   dh_autoreconf_clean -O--buildsystem=pybuild -O--test-pytest
   dh_clean -O--buildsystem=pybuild -O--test-pytest
 debian/rules binary
dh binary --buildsystem=pybuild --test-pytest
   dh_update_autotools_config -O--buildsystem=pybuild -O--test-pytest
   dh_autoreconf -O--buildsystem=pybuild -O--test-pytest
   debian/rules execute_before_dh_auto_configure
make[1]: Entering directory '/<<PKGBUILDDIR>>'
touch sparse/tests/__init__.py
make[1]: Leaving directory '/<<PKGBUILDDIR>>'
   dh_auto_configure -O--buildsystem=pybuild -O--test-pytest
   dh_auto_build -O--buildsystem=pybuild -O--test-pytest

[... snipped ...]

adding 'sparse/numba_backend/tests/test_dot.py'
adding 'sparse/numba_backend/tests/test_einsum.py'
adding 'sparse/numba_backend/tests/test_elemwise.py'
adding 'sparse/numba_backend/tests/test_io.py'
adding 'sparse/numba_backend/tests/test_namespace.py'
adding 'sparse/tests/__init__.py'
adding 'sparse/tests/conftest.py'
adding 'sparse/tests/test_backends.py'
adding 'sparse-0.16.0a9.dist-info/licenses/LICENSE'
adding 'sparse-0.16.0a9.dist-info/METADATA'
adding 'sparse-0.16.0a9.dist-info/WHEEL'
adding 'sparse-0.16.0a9.dist-info/entry_points.txt'
adding 'sparse-0.16.0a9.dist-info/top_level.txt'
adding 'sparse-0.16.0a9.dist-info/RECORD'
removing build/bdist.linux-x86_64/wheel
Successfully built sparse-0.16.0a9-py2.py3-none-any.whl
I: pybuild plugin_pyproject:155: Unpacking wheel built for python3.13 with 
"installer" module
   create-stamp debian/debhelper-build-stamp
   dh_testroot -O--buildsystem=pybuild -O--test-pytest
   dh_prep -O--buildsystem=pybuild -O--test-pytest
   dh_auto_install --destdir=debian/python3-sparse/ -O--buildsystem=pybuild 
-O--test-pytest
I: pybuild plugin_pyproject:186: Copying package built for python3.14 to destdir
I: pybuild plugin_pyproject:186: Copying package built for python3.13 to destdir
   debian/rules execute_after_dh_auto_install
make[1]: Entering directory '/<<PKGBUILDDIR>>'
dh_auto_test
I: pybuild base:317: cd /<<PKGBUILDDIR>>/.pybuild/cpython3_3.14_sparse/build; 
python3.14 -m pytest 
ImportError while loading conftest 
'/<<PKGBUILDDIR>>/.pybuild/cpython3_3.14_sparse/build/tests/conftest.py'.
tests/conftest.py:1: in <module>
    import sparse
sparse/__init__.py:35: in <module>
    from sparse.numba_backend import *  # noqa: F403
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
sparse/numba_backend/__init__.py:79: in <module>
    from ._common import (
sparse/numba_backend/_common.py:8: in <module>
    import numba
/usr/lib/python3/dist-packages/numba/__init__.py:77: in <module>
    from numba.misc.special import (
/usr/lib/python3/dist-packages/numba/misc/special.py:3: in <module>
    from numba.core.typing.typeof import typeof
/usr/lib/python3/dist-packages/numba/core/typing/__init__.py:1: in <module>
    from .context import BaseContext, Context
/usr/lib/python3/dist-packages/numba/core/typing/context.py:10: in <module>
    from numba.core.typeconv import Conversion, rules
/usr/lib/python3/dist-packages/numba/core/typeconv/rules.py:2: in <module>
    from .typeconv import TypeManager, TypeCastingRules
/usr/lib/python3/dist-packages/numba/core/typeconv/typeconv.py:16: in <module>
    raise ImportError(msg)
E   ImportError: Numba could not be imported.
E   
--------------------------------------------------------------------------------
E   If you are seeing this message and are undertaking Numba development work, 
you may need to rebuild Numba.
E   Please see the development set up guide:
E
E   https://numba.readthedocs.io/en/stable/developer/contributing.html.
E
E   
--------------------------------------------------------------------------------
E   If you are not working on Numba development, the original error was: 
'cannot import name '_typeconv' from 'numba.core.typeconv' 
(/usr/lib/python3/dist-packages/numba/core/typeconv/__init__.py)'.
E   For help, please visit:
E
E   
https://numba.readthedocs.io/en/stable/user/faq.html#numba-could-not-be-imported
E: pybuild pybuild:389: test: plugin pyproject failed with: exit code=4: cd 
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.14_sparse/build; python3.14 -m pytest 
I: pybuild base:317: cd /<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build; 
python3.13 -m pytest 
============================= test session starts ==============================
platform linux -- Python 3.13.11, pytest-9.0.2, pluggy-1.6.0
rootdir: /<<PKGBUILDDIR>>
configfile: pytest.ini
plugins: cov-5.0.0, typeguard-4.4.4
collected 6108 items

sparse/numba_backend/tests/test_array_function.py ...................... [  0%]
........................................................................ [  1%]
.....................                                                    [  1%]
sparse/numba_backend/tests/test_compressed.py .......................... [  2%]
........................................................................ [  3%]
............................XXXXXXXXxX.................................. [  4%]
........................................................................ [  5%]
........................................................................ [  7%]
........................................................................ [  8%]
..XXXXXXXXxX............................................................ [  9%]
........................................................................ [ 10%]
........................................................................ [ 11%]
................................................xxxxxxXXxx.............. [ 12%]
........................................................................ [ 14%]
........................................................................ [ 15%]
........................................................................ [ 16%]
......................XXxxxxXXxx........................................ [ 17%]
........................................................................ [ 18%]
........................................................................ [ 19%]
........................................................................ [ 21%]
........................................................................ [ 22%]
........................................................................ [ 23%]
........................................................................ [ 24%]
........................................................................ [ 25%]
.............................................................            [ 26%]
sparse/numba_backend/tests/test_compressed_2d.py ....................... [ 27%]
........................................................................ [ 28%]
.............................................                            [ 29%]
sparse/numba_backend/tests/test_compressed_convert.py ..............     [ 29%]
sparse/numba_backend/tests/test_conversion.py .......................... [ 29%]
.........                                                                [ 29%]
sparse/numba_backend/tests/test_coo.py ................................. [ 30%]
........................................................................ [ 31%]
........................................................................ [ 32%]
........................................................................ [ 34%]
.............................................XXXXXXXXxX................. [ 35%]
........................................................................ [ 36%]
........................................................................ [ 37%]
........................................................................ [ 38%]
...................XXXXXXXXxX........................................... [ 39%]
........................................................................ [ 41%]
........................................................................ [ 42%]
.................................................................xXxxxxX [ 43%]
Xxx..................................................................... [ 44%]
........................................................................ [ 45%]
........................................................................ [ 47%]
.......................................XXxxxxXXxx....................... [ 48%]
........................................................................ [ 49%]
........................................................................ [ 50%]
........................................................................ [ 51%]
........................................................................ [ 52%]
........................................................................ [ 54%]
............................................................xXXX........ [ 55%]
........................................................................ [ 56%]
........................................................................ [ 57%]
........................................................................ [ 58%]
........................................................................ [ 59%]
........................................................................ [ 61%]
........................................................................ [ 62%]
........................................................................ [ 63%]
........................................................................ [ 64%]
........................................................................ [ 65%]
........................................................................ [ 67%]
........................................................................ [ 68%]
........................................................................ [ 69%]
........................................................................ [ 70%]
........................................................................ [ 71%]
.....................................xxxxxxxxxxxxxxXxxXxxXxxXxxxxxxxxxxx [ 72%]
xxxxxxxxxxxxxxxXxxXxxXxxXxxxxxxxxxxxx................................... [ 74%]
........................................................................ [ 75%]
..................                                                       [ 75%]
sparse/numba_backend/tests/test_coo_numba.py ....                        [ 75%]
sparse/numba_backend/tests/test_dask_interop.py .                        [ 75%]
sparse/numba_backend/tests/test_dok.py ................................. [ 76%]
...................................................................      [ 77%]
sparse/numba_backend/tests/test_dot.py ................................. [ 77%]
........................................................................ [ 79%]
........................................................................ [ 80%]
............................................x........................... [ 81%]
........................................................................ [ 82%]
........................................................................ [ 83%]
.......                                                                  [ 83%]
sparse/numba_backend/tests/test_einsum.py .............................. [ 84%]
........................................................................ [ 85%]
........................................................................ [ 86%]
...........                                                              [ 86%]
sparse/numba_backend/tests/test_elemwise.py ............................ [ 87%]
........................................................................ [ 88%]
........................................................................ [ 89%]
........................................................................ [ 90%]
........................................................................ [ 92%]
........................................................................ [ 93%]
........................................................................ [ 94%]
........................................................................ [ 95%]
........................................................................ [ 96%]
........................................................................ [ 97%]
..............................                                           [ 98%]
sparse/numba_backend/tests/test_io.py .....                              [ 98%]
sparse/numba_backend/tests/test_namespace.py .                           [ 98%]
sparse/tests/test_backends.py .s............ssssssssssss................ [ 99%]
.s                                                                       [ 99%]
tests/test_backends.py .s............ssssssssssss.................s      [100%]

=============================== warnings summary ===============================
.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_array_function.py:
 1 warning
.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_coo.py: 8 
warnings
.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_dot.py: 9 
warnings
.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_einsum.py: 
10 warnings
  
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_coo/core.py:424:
 DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is 
deprecated, and will error in future. Ensure you extract a single element from 
your array before performing this operation. (Deprecated NumPy 1.25.)
    x[coords] = data

.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_coo.py: 21 
warnings
  
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_coo/core.py:1139:
 DeprecationWarning: resize is deprecated on all SpraseArray objects.
    warnings.warn("resize is deprecated on all SpraseArray objects.", 
DeprecationWarning, stacklevel=1)

.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_coo.py: 74 
warnings
.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_dask_interop.py:
 3 warnings
.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_dok.py: 7 
warnings
.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_dot.py: 150 
warnings
.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_einsum.py: 
16 warnings
.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_elemwise.py:
 2 warnings
  
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_coo/core.py:215:
 DeprecationWarning: coords should be an ndarray. This will raise a ValueError 
in the future.
    warnings.warn(

.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_coo.py: 12 
warnings
  
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_coo/core.py:244:
 DeprecationWarning: shape should be provided. This will raise a ValueError in 
the future.
    warnings.warn(

.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_coo.py::test_html_for_size_zero
  
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_utils.py:479:
 RuntimeWarning: invalid value encountered in scalar divide
    density = np.float64(arr.nnz) / np.float64(arr.size)

.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_coo.py::test_html_for_size_zero
  
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_utils.py:497:
 RuntimeWarning: invalid value encountered in scalar divide
    f"{np.float64(arr.nbytes) / np.float64(reduce(operator.mul, arr.shape, 1) * 
arr.dtype.itemsize):.2f}"

.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_einsum.py: 
1651 warnings
  
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_common.py:1187:
 DeprecationWarning: numpy.core is deprecated and has been renamed to 
numpy._core. The numpy._core namespace contains private NumPy internals and its 
use is discouraged, as NumPy internals can change without warning in any 
release. In practice, most real-world usage of numpy.core is to access 
functionality in the public NumPy API. If that is the case, use the public 
NumPy API. If not, you are using NumPy internals. If you would still like to 
access an internal attribute, use numpy._core.einsumfunc.
    if s not in np.core.einsumfunc.einsum_symbols:

.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_einsum.py: 
224 warnings
  
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_common.py:1297:
 DeprecationWarning: numpy.core is deprecated and has been renamed to 
numpy._core. The numpy._core namespace contains private NumPy internals and its 
use is discouraged, as NumPy internals can change without warning in any 
release. In practice, most real-world usage of numpy.core is to access 
functionality in the public NumPy API. If that is the case, use the public 
NumPy API. If not, you are using NumPy internals. If you would still like to 
access an internal attribute, use numpy._core.einsumfunc.
    if s not in np.core.einsumfunc.einsum_symbols:

.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_einsum.py: 
14 warnings
  
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_common.py:1235:
 DeprecationWarning: numpy.core is deprecated and has been renamed to 
numpy._core. The numpy._core namespace contains private NumPy internals and its 
use is discouraged, as NumPy internals can change without warning in any 
release. In practice, most real-world usage of numpy.core is to access 
functionality in the public NumPy API. If that is the case, use the public 
NumPy API. If not, you are using NumPy internals. If you would still like to 
access an internal attribute, use numpy._core.einsumfunc.
    unused = list(np.core.einsumfunc.einsum_symbols_set - set(used))

.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_einsum.py: 
30 warnings
  
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_common.py:1280:
 DeprecationWarning: numpy.core is deprecated and has been renamed to 
numpy._core. The numpy._core namespace contains private NumPy internals and its 
use is discouraged, as NumPy internals can change without warning in any 
release. In practice, most real-world usage of numpy.core is to access 
functionality in the public NumPy API. If that is the case, use the public 
NumPy API. If not, you are using NumPy internals. If you would still like to 
access an internal attribute, use numpy._core.einsumfunc.
    if s not in (np.core.einsumfunc.einsum_symbols):

.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_einsum.py: 
12 warnings
  
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_common.py:1211:
 DeprecationWarning: numpy.core is deprecated and has been renamed to 
numpy._core. The numpy._core namespace contains private NumPy internals and its 
use is discouraged, as NumPy internals can change without warning in any 
release. In practice, most real-world usage of numpy.core is to access 
functionality in the public NumPy API. If that is the case, use the public 
NumPy API. If not, you are using NumPy internals. If you would still like to 
access an internal attribute, use numpy._core.einsumfunc.
    subscripts += np.core.einsumfunc.einsum_symbols[s]

.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_einsum.py::test_einsum_nosubscript[0.1-input3]
.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_einsum.py::test_einsum_nosubscript[1.0-input3]
  
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_common.py:1225:
 DeprecationWarning: numpy.core is deprecated and has been renamed to 
numpy._core. The numpy._core namespace contains private NumPy internals and its 
use is discouraged, as NumPy internals can change without warning in any 
release. In practice, most real-world usage of numpy.core is to access 
functionality in the public NumPy API. If that is the case, use the public 
NumPy API. If not, you are using NumPy internals. If you would still like to 
access an internal attribute, use numpy._core.einsumfunc.
    subscripts += np.core.einsumfunc.einsum_symbols[s]

.pybuild/cpython3_3.13_sparse/build/sparse/tests/test_backends.py::test_scipy_inv[csr-C]
.pybuild/cpython3_3.13_sparse/build/tests/test_backends.py::test_scipy_inv[csr-C]
  /usr/lib/python3/dist-packages/scipy/sparse/linalg/_dsolve/linsolve.py:606: 
SparseEfficiencyWarning: splu converted its input to CSC format
    return splu(A).solve

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
- generated xml file: 
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/junit/test-results.xml -

---------- coverage: platform linux, python 3.13.11-final-0 ----------
Name                                                Stmts   Miss  Cover   
Missing
---------------------------------------------------------------------------------
sparse/__init__.py                                     23      6    74%   
18-19, 24-25, 32-33
sparse/_version.py                                     13      3    77%   8-11
sparse/finch_backend/__init__.py                        6      6     0%   1-121
sparse/numba_backend/_common.py                       689     51    93%   
64-68, 159-160, 162, 166-167, 173, 196, 310, 371, 462, 491, 1213, 1223-1224, 
1254, 1263, 1265, 1281, 1298, 1652, 1987, 1990, 1996, 2010-2018, 2052, 2075, 
2088-2094, 2106, 2110, 2142, 2150, 2178-2179, 2183, 2193, 2198, 2202, 2206, 2210
sparse/numba_backend/_compressed/common.py             72      3    96%   19-22
sparse/numba_backend/_compressed/compressed.py        383     39    90%   28, 
33, 150, 166, 176, 220, 329-335, 396, 406, 408, 513, 556, 559, 587-590, 607, 
641, 650, 707, 710, 748, 794-795, 798-803, 831, 834, 837, 847, 892, 924
sparse/numba_backend/_compressed/convert.py           111     40    64%   
19-35, 129, 166-199, 264-265
sparse/numba_backend/_compressed/indexing.py          118      1    99%   26
sparse/numba_backend/_coo/common.py                   416     72    83%   
163-164, 284, 325, 394, 679, 855, 945-947, 972-974, 1011, 1095, 1354, 1358, 
1367-1414, 1425-1459, 1477, 1481, 1493, 1554
sparse/numba_backend/_coo/core.py                     407     23    94%   264, 
526, 855, 933, 941, 992, 1042, 1145, 1148, 1203, 1213, 1253, 1294-1301, 
1451-1454, 1482, 1514, 1604
sparse/numba_backend/_coo/indexing.py                 124      3    98%   46, 
147, 152
sparse/numba_backend/_dok.py                          181      9    95%   131, 
319, 409, 416, 426, 502, 554-556
sparse/numba_backend/_settings.py                      13      2    85%   16-17
sparse/numba_backend/_slicing.py                      127      1    99%   113
sparse/numba_backend/_sparse_array.py                 271     37    86%   36, 
180-186, 207-215, 287, 300-301, 304, 316, 323, 332, 355, 395, 428, 431, 792, 
802, 965-972, 976, 980, 984, 988, 992, 995-997
sparse/numba_backend/_umath.py                        283      9    97%   
119-121, 152, 335, 371, 689, 692, 756
sparse/numba_backend/_utils.py                        308    100    68%   
114-158, 171-193, 204-217, 318, 323, 463-472, 502-503, 530, 532, 534, 536, 538, 
650, 673, 678
sparse/numba_backend/tests/test_array_function.py      76      1    99%   11
sparse/numba_backend/tests/test_compressed.py         209      6    97%   25-33
sparse/numba_backend/tests/test_coo.py               1092      1    99%   432
sparse/numba_backend/tests/test_coo_numba.py           45      4    91%   11, 
18, 54, 64
sparse/numba_backend/tests/test_dot.py                193      1    99%   279
sparse/numba_backend/tests/test_elemwise.py           347      1    99%   381
sparse/tests/test_backends.py                         143     45    69%   
19-25, 39-62, 99-104, 110-116, 122-128, 211-223
---------------------------------------------------------------------------------
TOTAL                                                6313    464    93%

17 files skipped due to complete coverage.
Coverage HTML written to dir htmlcov

= 5923 passed, 28 skipped, 97 xfailed, 60 xpassed, 2250 warnings in 103.50s 
(0:01:43) =
dh_auto_test: error: pybuild --test --test-pytest -i python{version} -p "3.14 
3.13" returned exit code 13
make[1]: *** [debian/rules:16: execute_after_dh_auto_install] Error 25
make[1]: Leaving directory '/<<PKGBUILDDIR>>'
make: *** [debian/rules:7: binary] Error 2
dpkg-buildpackage: error: debian/rules binary subprocess returned exit status 2
--------------------------------------------------------------------------------

Reply via email to