Your message dated Sun, 10 Nov 2024 22:06:22 +0000
with message-id <e1tag4c-00fzwz...@fasolo.debian.org>
and subject line Bug#1084311: fixed in octave-symbolic 3.2.1-3
has caused the Debian Bug report #1084311,
regarding octave-symbolic: FTBFS: Some tests failed. Giving up...
to be marked as done.

This means that you claim that the problem has been dealt with.
If this is not the case it is now your responsibility to reopen the
Bug report if necessary, and/or fix the problem forthwith.

(NB: If you are a system administrator and have no idea what this
message is talking about, this may indicate a serious mail system
misconfiguration somewhere. Please contact ow...@bugs.debian.org
immediately.)


-- 
1084311: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1084311
Debian Bug Tracking System
Contact ow...@bugs.debian.org with problems
--- Begin Message ---
Package: src:octave-symbolic
Version: 3.2.1-2
Severity: serious
Tags: ftbfs

Dear maintainer:

During a rebuild of all packages in unstable, your package failed to build:

--------------------------------------------------------------------------------
[...]
 debian/rules binary
dh binary --buildsystem=octave
   dh_update_autotools_config -O--buildsystem=octave
   dh_autoreconf -O--buildsystem=octave
   dh_octave_version -O--buildsystem=octave
Checking the Octave version... ok
   dh_auto_configure -O--buildsystem=octave
   dh_auto_build -O--buildsystem=octave
   dh_auto_test -O--buildsystem=octave
   create-stamp debian/debhelper-build-stamp
   dh_testroot -O--buildsystem=octave
   dh_prep -O--buildsystem=octave
   dh_auto_install --destdir=debian/octave-symbolic/ -O--buildsystem=octave
        octave --no-gui --no-history --silent --no-init-file --no-window-system 
/usr/share/dh-octave/install-pkg.m 
/<<PKGBUILDDIR>>/debian/octave-symbolic/usr/share/octave/packages 
/<<PKGBUILDDIR>>/debian/octave-symbolic/usr/lib/x86_64-linux-gnu/octave/packages

[... snipped ...]

 assert (isequal (potential(f, x, 0), F))
 assert (isequal (potential(f, x, 2), F - 8))
***** test
 F = x*exp(y) + (z-1)^2;
 f = gradient(F);
 G = potential(f, [x;y;z], [0;1;1]);
 assert (isAlways (G == F))
***** test
 F = x*exp(y);
 f = gradient(F);
 G = potential(f);
 assert (isAlways (G == F))
***** test
 % no potential exists
 syms x y
 a = [x; x*y^2];
 assert (isnan (potential (a)))
***** shared
***** xtest
 % fails b/c of sympy #8458 (piecewise expr that should simplify)
 syms x
 f = cos(x);
 assert (isequal (potential(f, x), sin(x)))
!!!!! known failure
assert (isequal (potential (f, x), sin (x))) failed
6 tests, 5 passed, 1 known failure, 0 skipped
[inst/@sym/laplace.m]
/<<PKGBUILDDIR>>/inst/@sym/laplace.m
***** test
 % basic
 syms t s u w
 assert(logical( laplace(cos(3*t)) == s/(s^2+9) ))
 assert(logical( laplace(t^3) == 6/s^4 ))
***** test
 % matlab SMT compat
 syms t s u w z
 assert(logical( laplace(exp(2*t)) == 1/(s-2) ))
 assert(logical( laplace(exp(2*s)) == 1/(z-2) ))
 assert(logical( laplace(exp(2*u),w) == 1/(w-2) ))
 assert(logical( laplace(exp(2*u),u,w) == 1/(w-2) ))
***** test
 syms x s t z
 % matlab SMT prefers t over x
 assert (isequal (laplace (x*exp (t), z), x/(z - 1)))
 % as usual, you can just specify:
 assert (isequal (laplace(x*exp(t), t, z), x/(z - 1)))  % SMT result
 assert (isequal (laplace(x*exp(t), x, z), exp(t)/z^2))
***** test
 syms x a s
 % if no t, use symvar: take x before a
 assert (isequal (laplace (a*exp (x)), a/(s - 1)))
***** error <more than one> laplace (sym('t')*sym('t', 'real'))
***** test
 % constant, issue #250
 syms s
 f = laplace(2, s);
 assert (isequal (f, 2/s))
***** test
 % Dirac delta and Heaviside tests
 syms t s
 assert (isequal (laplace(dirac(t-3)), exp(-3*s)))
 assert (isequal (laplace((t-3)*heaviside(t-3)), exp(-3*s)/s^2))
***** xtest
 % Differential operator to algebraic
 % SymPy cannot evaluate? (Issue #170)
 syms s f(t)
 assert(logical( laplace(diff(f(t),t),t,s) == s*laplace(f(t),t,s)-f(0) ))
***** test
 % https://github.com/gnu-octave/symbolic/issues/1295
 % fails on SymPy 1.10.* and 1.11.*
 if (pycall_sympy__ ('return Version(spver) >= Version("1.12")'))
   syms t s
   L = simplify (laplace (3*t*sin (4*t)));
   assert (isAlways (L == 24*s / (s^2 + 16)^2))
 end
9 tests, 9 passed, 0 known failure, 0 skipped
[inst/laguerreL.m]
/<<PKGBUILDDIR>>/inst/laguerreL.m
***** error laguerreL (1)
***** error laguerreL (1, 2, 3)
***** assert (isequal (laguerreL (0, rand), 1))
***** test
 x = rand;
 assert (isequal (laguerreL (1, x), 1 - x))
***** test
 x=rand;
 y1=laguerreL(2, x);
 p2=[.5 -2 1];
 y2=polyval(p2,x);
 assert(y1 - y2, 0, 10*eps);
***** test
 x=rand;
 y1=laguerreL(3, x);
 p3=[-1/6 9/6 -18/6 1];
 y2=polyval(p3,x);
 assert(y1 - y2, 0, 20*eps);
***** test
 x=rand;
 y1=laguerreL(4, x);
 p4=[1/24 -16/24 72/24 -96/24 1];
 y2=polyval(p4,x);
 assert(y1 - y2, 0, 30*eps)
***** error <positive integer> laguerreL(1.5, 10)
***** error <same size or scalar> laguerreL([0 1], [1 2 3])
***** error <same size or scalar> laguerreL([0 1], [1; 2])
***** test
 % numerically stable implementation (in n)
 L = laguerreL (10, 10);
 Lex = 1763/63;
 assert (L, Lex, -eps)
 L = laguerreL (20, 10);
 Lex = -177616901779/14849255421;  % e.g., laguerreL(sym(20),10)
 assert (L, Lex, -eps)
***** test
 % vectorized x
 L = laguerreL (2, [5 6 7]);
 Lex = [3.5 7 11.5];
 assert (L, Lex, eps)
***** test
 L = laguerreL (0, [4 5]);
 assert (L, [1 1], eps)
***** test
 % vector n
 L = laguerreL ([0 1 2 3], [4 5 6 9]);
 assert (L, [1 -4 7 -26], eps)
***** test
 % vector n, scalar x
 L = laguerreL ([0 1 2 3], 6);
 assert (L, [1 -5 7 1], eps)
***** assert (isa (laguerreL (0, single (1)), 'single'))
***** assert (isa (laguerreL (1, single ([1 2])), 'single'))
***** assert (isa (laguerreL ([1 2], single ([1 2])), 'single'))
18 tests, 18 passed, 0 known failure, 0 skipped
[inst/dirac.m]
/<<PKGBUILDDIR>>/inst/dirac.m
***** assert (isinf (dirac (0)))
***** assert (dirac (1) == 0)
***** assert (isnan (dirac (nan)))
***** assert (isequaln (dirac ([-1 1 0 eps inf -inf nan]), [0 0 inf 0 0 0 nan]))
***** error <complex values> dirac (1i)
***** assert (isa (dirac (single (0)), 'single'))
6 tests, 6 passed, 0 known failure, 0 skipped
[inst/fibonacci.m]
/<<PKGBUILDDIR>>/inst/fibonacci.m
***** assert (isequal ( fibonacci (sym(0)), 0))
***** assert (isequal ( fibonacci (sym(14)), sym(377)))
***** assert (isequal ( fibonacci (14), 377))
***** test syms x
 assert (isequal (fibonacci (5,x), x^4 + 3*x^2 + 1))
4 tests, 4 passed, 0 known failure, 0 skipped
[inst/lambertw.m]
/<<PKGBUILDDIR>>/inst/lambertw.m
***** assert (isequal (lambertw (0), 0))
***** assert (isequal (lambertw (0, 0), 0))
***** assert (lambertw (-1/exp(1)), -1, 2*eps)
***** assert (lambertw (0, -1/exp(1)), -1, 2*eps)
***** assert (lambertw (-1, -1/exp(1)), -1, 2*eps)
***** test
 x = [1 2 3 pi 10 100 1000 12345];
 W = lambertw (x);
 assert (W.*exp (W), x, -3*eps)
***** test
 x = [1 2 3 pi 10 100 1000 12345];
 k = [-3 -2 -1 0 1 2 3 4];
 W = lambertw (k, x);
 assert (W.*exp (W), x, -10*eps)
***** test
 % input shape preserved
 x = [0 1; 2 3];
 b = x;
 W = lambertw (b, x);
 assert (W.*exp (W), x, -10*eps)
***** test
 % input shape preserved
 x = [0 1; 2 3];
 b = 0;
 W = lambertw (b, x);
 assert (W.*exp (W), x, -10*eps)
***** test
 % input shape preserved
 x = 10;
 b = [0 1; 2 3];
 W = lambertw (b, x);
 assert (W.*exp (W), x*ones (size (b)), -10*eps)
***** assert (isnan (lambertw (nan)))
***** test
 % limiting behaviour as z large
 k = 3;
 A = lambertw (k, 1e100);
 assert (abs (imag (A) - 2*pi*k) < 0.1)
***** test
 % limiting behaviour as z large, up imag axis
 k = 1;
 A = lambertw (k, 1e100*1i);
 assert (abs (imag (A) - (2*k+0.5)*pi) < 0.1)
***** test
 % limiting behaviour as z large, down imag axis
 k = -2;
 A = lambertw (k, -1e100*1i);
 assert (abs (imag (A) - (2*k-0.5)*pi) < 0.1)
***** test
 % limiting behaviour as z large, near branch
 k = 3;
 A = lambertw (k, -1e100);
 B = lambertw (k, -1e100 + 1i);
 C = lambertw (k, -1e100 - 1i);
 assert (abs (imag (A) - (2*k+1)*pi) < 0.1)
 assert (abs (imag (B) - (2*k+1)*pi) < 0.1)
 assert (abs (imag (C) - (2*k-1)*pi) < 0.1)
***** test
 % infinities and nan
 A = lambertw ([inf exp(1) -inf nan]);
 B = [inf  1  inf + pi*1i nan];
 assert (isequaln (A, B))
***** test
 % infinities and nan
 A = lambertw (3, [inf 1 -inf nan]);
 B = [inf + 2*3*pi*1i  lambertw(3,1)  inf + (2*3+1)*pi*1i  nan];
 assert (isequaln (A, B))
***** test
 % infinities and nan
 A = lambertw ([0 1 2 0], [inf -inf nan exp(1)]);
 B = [inf  inf+3*pi*1i  nan  1];
 assert (isequaln (A, B))
***** test
 % scalar infinity z, vector b
 A = lambertw ([1 2 -3], inf);
 B = [lambertw(1, inf)  lambertw(2, inf)  lambertw(-3, inf)];
 assert (isequal (A, B))
***** test
 % scalar -infinity z, vector b
 A = lambertw ([1 2 -3], -inf);
 B = [lambertw(1, -inf)  lambertw(2, -inf)  lambertw(-3, -inf)];
 assert (isequal (A, B))
***** test
 % scalar z nan, vector b
 A = lambertw ([1 2 -3], nan);
 B = [nan nan nan];
 assert (isequaln (A, B))
21 tests, 21 passed, 0 known failure, 0 skipped
[inst/finiteset.m]
/<<PKGBUILDDIR>>/inst/finiteset.m
***** test
 s1 = finiteset(sym(1), 2, 2);
 s2 = finiteset(sym(1), 2, 2, 2);
 assert (isequal (s1, s2))
***** test
 s1 = finiteset(sym(0), 1);
 s2 = finiteset(sym(0), 2, 3);
 s = finiteset(sym(0), 1, 2, 3);
 assert (isequal (s1 + s2, s))
***** test
 e = finiteset();
 s = finiteset(sym(1));
 s2 = e + s;
 assert (isequal (s, s2))
3 tests, 3 passed, 0 known failure, 0 skipped
[inst/findsymbols.m]
/<<PKGBUILDDIR>>/inst/findsymbols.m
***** test
 syms x b y n a arlo
 z = a*x + b*pi*sin (n) + exp (y) + exp (sym (1)) + arlo;
 s = findsymbols (z);
 assert (isequal ([s{:}], [a,arlo,b,n,x,y]))
***** test
 syms x
 s = findsymbols (x);
 assert (isequal (s{1}, x))
***** test
 syms z x y a
 s = findsymbols ([x y; 1 a]);
 assert (isequal ([s{:}], [a x y]))
***** assert (isempty (findsymbols (sym (1))))
***** assert (isempty (findsymbols (sym ([1 2]))))
***** assert (isempty (findsymbols (sym (nan))))
***** assert (isempty (findsymbols (sym (inf))))
***** assert (isempty (findsymbols (exp (sym (2)))))
***** test
 % empty sym for findsymbols, findsym, and symvar
 assert (isempty (findsymbols (sym([]))))
 assert (isempty (findsym (sym([]))))
 assert (isempty (symvar (sym([]))))
***** test
 % diff. assumptions make diff. symbols
 x1 = sym('x');
 x2 = sym('x', 'positive');
 f = x1*x2;
 assert (length (findsymbols (f)) == 2)
***** test
 % symfun or sym
 syms x f(y)
 a = f*x;
 b = f(y)*x;
 assert (isequal (findsymbols(a), {x y}))
 assert (isequal (findsymbols(b), {x y}))
***** test
 % findsymbols on symfun does not find the argnames (unless they
 % are on the RHS of course, this matches SMT 2014a).
 syms a x y
 f(x, y) = a;  % const symfun
 assert (isequal (findsymbols(f), {a}))
 syms a x y
 f(x, y) = a*y;
 assert (isequal (findsymbols(f), {a y}))
***** test
 % sorts lexicographically, same as symvar *with single input*
 % (note symvar does something different with 2 inputs).
 syms A B a b x y X Y
 f = A*a*B*b*y*X*Y*x;
 assert (isequal (findsymbols(f), {A B X Y a b x y}))
 assert (isequal (symvar(f), [A B X Y a b x y]))
***** test
 % symbols in matpow
 syms x y
 syms n
 A = [sin(x) 2; y 1];
 B = A^n;
 L = findsymbols(B);
 assert (isequal (L, {n x y}))
***** test
 % array of eq
 syms x y
 assert (isequal (findsymbols (2 == [2 x y]), {x y}))
***** test
 % array of ineq
 syms x y
 A = [x < 1  2*x < y  x >= 2  3 <= x  x != y];
 assert (isequal (findsymbols (A), {x y}))
16 tests, 16 passed, 0 known failure, 0 skipped
[inst/assume.m]
/<<PKGBUILDDIR>>/inst/assume.m
***** error <if you want output>
 a = assume('a', 'real')
***** error <cannot have only assumptions>
 assume positive integer
***** error <no assumptions>
 assume x y
***** error <should be the final>
 assume x clear real
***** error <algebraic assumptions are not supported>
 assume a>0
***** error <only symbols>
 assume 'x/pi' integer
***** test
 syms x
 assume x positive
 a = assumptions(x);
 assert(strcmp(a, 'x: positive'))
 assume x even
 a = assumptions(x);
 assert(strcmp(a, 'x: even'))
***** test
 % multiple assumptions
 syms x
 assume x positive integer
 [tilde, a] = assumptions(x, 'dict');
 assert(a{1}.integer)
 assert(a{1}.positive)
***** test
 % does workspace
 syms x positive
 x2 = x;
 f = sin(x);
 assume x negative
 a = assumptions(x);
 assert(strcmp(a, 'x: negative'))
 a = assumptions(x2);
 assert(strcmp(a, 'x: negative'))
 a = assumptions(f);
 assert(strcmp(a, 'x: negative'))
***** error <undefined>
 % does not create new variable x
 clear x
 assume x real
***** error <undefined>
 % no explicit variable named x
 clear x
 f = 2*sym('x');
 assume x real
***** test
 % clear does workspace
 syms x positive
 f = 2*x;
 assume x clear
 assert (isempty (assumptions (f)));
 assert (isempty (assumptions ()));
***** test
 syms x y
 f = sin (2*x);
 assume x y real
 assert (strcmp (assumptions (x), 'x: real'))
 assert (strcmp (assumptions (y), 'y: real'))
 assert (strcmp (assumptions (f), 'x: real'))
***** test
 syms x y
 f = sin (2*x);
 assume x y positive even
 assert (strcmp (assumptions (x), 'x: positive, even') || strcmp (assumptions 
(x), 'x: even, positive'))
 assert (strcmp (assumptions (y), 'y: positive, even') || strcmp (assumptions 
(y), 'y: even, positive'))
 assert (strcmp (assumptions (f), 'x: positive, even') || strcmp (assumptions 
(f), 'x: even, positive'))
***** test
 % works from variable names not symbols
 syms x y
 a = [x y];
 assume a real
 assert (strcmp (assumptions (x), 'x: real'))
 assert (strcmp (assumptions (y), 'y: real'))
***** test
 % works from variable names not symbols
 y = sym('x');
 f = 2*y;
 assume y real
 assert (strcmp (assumptions (f), 'x: real'))
***** test
 % matrix of symbols
 syms a b c d
 A = [a b; c d];
 assume A real
 assert (strcmp (assumptions (a), 'a: real'))
 assert (strcmp (assumptions (b), 'b: real'))
 assert (strcmp (assumptions (c), 'c: real'))
 assert (strcmp (assumptions (d), 'd: real'))
***** test
 % assume after symfun
 clear x
 syms f(x)
 assume x real
 assert (~ isempty (assumptions (formula (f))))
 assert (~ isempty (assumptions (argnames (f))))
18 tests, 18 passed, 0 known failure, 0 skipped
[inst/digits.m]
/<<PKGBUILDDIR>>/inst/digits.m
***** test
 orig = digits(32);  % to reset later
 m = digits(64);
 p = vpa(sym(pi));
 assert (abs (double (sin(p))) < 1e-64)
 n = digits(m);
 assert (n == 64)
 p = vpa(sym(pi));
 assert (abs (double (sin(p))) < 1e-32)
 assert (abs (double (sin(p))) > 1e-40)
 digits(orig)
1 test, 1 passed, 0 known failure, 0 skipped
[inst/poly2sym.m]
/<<PKGBUILDDIR>>/inst/poly2sym.m
***** shared x,y,a,b,c,p
 syms x y a b c
 p = x^3 + 2*x^2 + 3*x + 4;
***** assert(isAlways(  poly2sym([1 2 3 4]) == p  ))
***** assert(isAlways(  poly2sym([1 2 3 4],x) == p  ))
***** assert(isAlways(  poly2sym([1 2 3 4],y) == subs(p,x,y) ))
***** assert(isAlways(  poly2sym([1 2 3 4],5) == subs(p,x,5) ))
***** assert(isequal(  poly2sym ([1]),  1  ))
***** assert(isequal(  poly2sym ([]),  0  ))
***** assert(isAlways(  poly2sym(sym([1 2 3 4]),x) == p  ))
***** assert(isAlways(  poly2sym([a b c],x) == a*x^2 + b*x + c  ))
***** assert(isAlways(  poly2sym([a b c]) == a*x^2 + b*x + c  ))
***** assert(isequal(  poly2sym(sym([])),  0  ))
***** assert(isAlways(  poly2sym({sym(1) sym(2)}, x) == x + 2  ))
***** assert(isequal(  poly2sym ({1}),  1  ))
***** assert(isequal(  poly2sym ({}),  0  ))
***** assert(isequal(  poly2sym ({1}, x),  1  ))
***** assert(isequal(  poly2sym ({}, x),  0  ))
***** assert(isAlways(  poly2sym([x x], x) == x^2 + x  ))
***** test
 % mixed cell array with doubles and syms
 assert (isequal (poly2sym ({2.0 sym(3) int64(4)}), 2*x^2 + 3*x + 4))
***** test
 % string for x
 p = poly2sym ([1 2], 's');
 syms s
 assert (isequal (p, s + 2))
18 tests, 18 passed, 0 known failure, 0 skipped
Checking C++ files ...

Done running the unit tests.
Summary: 2426 tests, 2394 passed, 31 known failures, 0 skipped
Some tests failed.  Giving up...
make: *** [debian/rules:5: binary] Error 1
dpkg-buildpackage: error: debian/rules binary subprocess returned exit status 2
--------------------------------------------------------------------------------

The above is just how the build ends and not necessarily the most relevant part.
If required, the full build log is available here:

https://people.debian.org/~sanvila/build-logs/202410/

About the archive rebuild: The build was made on virtual machines from AWS,
using sbuild and a reduced chroot with only build-essential packages.

If you could not reproduce the bug please contact me privately, as I
am willing to provide ssh access to a virtual machine where the bug is
fully reproducible.

If this is really a bug in one of the build-depends, please use
reassign and affects, so that this is still visible in the BTS web
page for this package.

Thanks.

--- End Message ---
--- Begin Message ---
Source: octave-symbolic
Source-Version: 3.2.1-3
Done: Rafael Laboissière <raf...@debian.org>

We believe that the bug you reported is fixed in the latest version of
octave-symbolic, which is due to be installed in the Debian FTP archive.

A summary of the changes between this version and the previous one is
attached.

Thank you for reporting the bug, which will now be closed.  If you
have further comments please address them to 1084...@bugs.debian.org,
and the maintainer will reopen the bug report if appropriate.

Debian distribution maintenance software
pp.
Rafael Laboissière <raf...@debian.org> (supplier of updated octave-symbolic 
package)

(This message was generated automatically at their request; if you
believe that there is a problem with it please contact the archive
administrators by mailing ftpmas...@ftp-master.debian.org)


-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA256

Format: 1.8
Date: Sun, 10 Nov 2024 17:00:00 -0300
Source: octave-symbolic
Architecture: source
Version: 3.2.1-3
Distribution: unstable
Urgency: medium
Maintainer: Debian Octave Group <team+pkg-octave-t...@tracker.debian.org>
Changed-By: Rafael Laboissière <raf...@debian.org>
Closes: 1084311
Changes:
 octave-symbolic (3.2.1-3) unstable; urgency=medium
 .
   * d/u/metadata: Use the official project slug at GitHub
   * d/p/fix-intersect-unit-test.patch: New patch (Closes: #1084311)
Checksums-Sha1:
 c4d7872c8cb8bb6c9dc425717a689e60586c71e9 2308 octave-symbolic_3.2.1-3.dsc
 cc0fbc5e0383ce08d951d955e91a1cea0e68f55a 6832 
octave-symbolic_3.2.1-3.debian.tar.xz
Checksums-Sha256:
 a7682c4e734a852f20522e1aec9aa8cb1cf45f86d503f6b90061eea9d901d763 2308 
octave-symbolic_3.2.1-3.dsc
 41b77e746a1f05cdf0e42f7cb3d8de7be0fcb50e30504511ef7545e6c4eec7fe 6832 
octave-symbolic_3.2.1-3.debian.tar.xz
Files:
 094ae87d6b2e82edec1a34fcecda0806 2308 math optional octave-symbolic_3.2.1-3.dsc
 f8897748f933001fa2b7e69163e06b12 6832 math optional 
octave-symbolic_3.2.1-3.debian.tar.xz

-----BEGIN PGP SIGNATURE-----

iQJGBAEBCAAwFiEEP0ZDkUmP6HS9tdmPISSqGYN4XJAFAmcxKPMSHHJhZmFlbEBk
ZWJpYW4ub3JnAAoJECEkqhmDeFyQSzMP/j0/DydQJms1tOkjIzjlgI8C910ywjYt
FPy9AbruBl/yFGxiW0vqutMqDl0EPmm8o9s82VYH7o+OdnqP2xeeRGp/x7K5GusB
7F2TTTfl6EgjcdM4uJn6Oi4sc/8vJSrAbp6CIvMu6aWX2yjvPl2TXQnBf/o5CIIr
uTbPm98CFxo/Qe5ZEnOhLKXGhH1SImj1x1m6x+K+O2ES2V08m6ETC2IZ1tYtRSHB
mCESYf4G+e2GAQr1p10ApSe3qc4OQa9cry0A6gbfxpaX2zhSBwZHbAra5q9ldalE
OUopnJmxq4TdCkLiYHwRHwQrCYbQFh3jYxIUmDUpWUURHnwWOLgbjuxIUhOnB5mR
sHWMx+yy1LofXHqkzGIwX7x5jMlnZTHJ0JncNrYiL/n7khxtkNtPyHvrG3u5hoxT
xDuJt0lG1PJ1/RsMN5YkYf+f1rBCoKTJCw3ihKETH4jzTdrUYRJuYXKoMHgr0h/G
hnnIpsDuCvT+MtkUY/xVbFV0rNcX/5/K0s4Y0BIlFMYHe/TvuC/utsw2tCFsb+j6
Uo3aIItE1bbh4Rhe5N8EMdbFLEgEpaI1o+kSjVfJsRaxAzTvH8kDcVqKB4x3VDqp
d5E//YpvhQK6oogGjXVcSHHVrefklAF4m2yMI4fWPC9+v/tYu+vFXV+D57iu3JV/
7n38YtQTLSLQ
=znfE
-----END PGP SIGNATURE-----

Attachment: pgp5YcDlIShdy.pgp
Description: PGP signature


--- End Message ---

Reply via email to