Package: src:octave-symbolic Version: 3.2.1-2 Severity: serious Tags: ftbfs
Dear maintainer: During a rebuild of all packages in unstable, your package failed to build: -------------------------------------------------------------------------------- [...] debian/rules binary dh binary --buildsystem=octave dh_update_autotools_config -O--buildsystem=octave dh_autoreconf -O--buildsystem=octave dh_octave_version -O--buildsystem=octave Checking the Octave version... ok dh_auto_configure -O--buildsystem=octave dh_auto_build -O--buildsystem=octave dh_auto_test -O--buildsystem=octave create-stamp debian/debhelper-build-stamp dh_testroot -O--buildsystem=octave dh_prep -O--buildsystem=octave dh_auto_install --destdir=debian/octave-symbolic/ -O--buildsystem=octave octave --no-gui --no-history --silent --no-init-file --no-window-system /usr/share/dh-octave/install-pkg.m /<<PKGBUILDDIR>>/debian/octave-symbolic/usr/share/octave/packages /<<PKGBUILDDIR>>/debian/octave-symbolic/usr/lib/x86_64-linux-gnu/octave/packages [... snipped ...] assert (isequal (potential(f, x, 0), F)) assert (isequal (potential(f, x, 2), F - 8)) ***** test F = x*exp(y) + (z-1)^2; f = gradient(F); G = potential(f, [x;y;z], [0;1;1]); assert (isAlways (G == F)) ***** test F = x*exp(y); f = gradient(F); G = potential(f); assert (isAlways (G == F)) ***** test % no potential exists syms x y a = [x; x*y^2]; assert (isnan (potential (a))) ***** shared ***** xtest % fails b/c of sympy #8458 (piecewise expr that should simplify) syms x f = cos(x); assert (isequal (potential(f, x), sin(x))) !!!!! known failure assert (isequal (potential (f, x), sin (x))) failed 6 tests, 5 passed, 1 known failure, 0 skipped [inst/@sym/laplace.m]
/<<PKGBUILDDIR>>/inst/@sym/laplace.m
***** test % basic syms t s u w assert(logical( laplace(cos(3*t)) == s/(s^2+9) )) assert(logical( laplace(t^3) == 6/s^4 )) ***** test % matlab SMT compat syms t s u w z assert(logical( laplace(exp(2*t)) == 1/(s-2) )) assert(logical( laplace(exp(2*s)) == 1/(z-2) )) assert(logical( laplace(exp(2*u),w) == 1/(w-2) )) assert(logical( laplace(exp(2*u),u,w) == 1/(w-2) )) ***** test syms x s t z % matlab SMT prefers t over x assert (isequal (laplace (x*exp (t), z), x/(z - 1))) % as usual, you can just specify: assert (isequal (laplace(x*exp(t), t, z), x/(z - 1))) % SMT result assert (isequal (laplace(x*exp(t), x, z), exp(t)/z^2)) ***** test syms x a s % if no t, use symvar: take x before a assert (isequal (laplace (a*exp (x)), a/(s - 1))) ***** error <more than one> laplace (sym('t')*sym('t', 'real')) ***** test % constant, issue #250 syms s f = laplace(2, s); assert (isequal (f, 2/s)) ***** test % Dirac delta and Heaviside tests syms t s assert (isequal (laplace(dirac(t-3)), exp(-3*s))) assert (isequal (laplace((t-3)*heaviside(t-3)), exp(-3*s)/s^2)) ***** xtest % Differential operator to algebraic % SymPy cannot evaluate? (Issue #170) syms s f(t) assert(logical( laplace(diff(f(t),t),t,s) == s*laplace(f(t),t,s)-f(0) )) ***** test % https://github.com/gnu-octave/symbolic/issues/1295 % fails on SymPy 1.10.* and 1.11.* if (pycall_sympy__ ('return Version(spver) >= Version("1.12")')) syms t s L = simplify (laplace (3*t*sin (4*t))); assert (isAlways (L == 24*s / (s^2 + 16)^2)) end 9 tests, 9 passed, 0 known failure, 0 skipped [inst/laguerreL.m]
/<<PKGBUILDDIR>>/inst/laguerreL.m
***** error laguerreL (1) ***** error laguerreL (1, 2, 3) ***** assert (isequal (laguerreL (0, rand), 1)) ***** test x = rand; assert (isequal (laguerreL (1, x), 1 - x)) ***** test x=rand; y1=laguerreL(2, x); p2=[.5 -2 1]; y2=polyval(p2,x); assert(y1 - y2, 0, 10*eps); ***** test x=rand; y1=laguerreL(3, x); p3=[-1/6 9/6 -18/6 1]; y2=polyval(p3,x); assert(y1 - y2, 0, 20*eps); ***** test x=rand; y1=laguerreL(4, x); p4=[1/24 -16/24 72/24 -96/24 1]; y2=polyval(p4,x); assert(y1 - y2, 0, 30*eps) ***** error <positive integer> laguerreL(1.5, 10) ***** error <same size or scalar> laguerreL([0 1], [1 2 3]) ***** error <same size or scalar> laguerreL([0 1], [1; 2]) ***** test % numerically stable implementation (in n) L = laguerreL (10, 10); Lex = 1763/63; assert (L, Lex, -eps) L = laguerreL (20, 10); Lex = -177616901779/14849255421; % e.g., laguerreL(sym(20),10) assert (L, Lex, -eps) ***** test % vectorized x L = laguerreL (2, [5 6 7]); Lex = [3.5 7 11.5]; assert (L, Lex, eps) ***** test L = laguerreL (0, [4 5]); assert (L, [1 1], eps) ***** test % vector n L = laguerreL ([0 1 2 3], [4 5 6 9]); assert (L, [1 -4 7 -26], eps) ***** test % vector n, scalar x L = laguerreL ([0 1 2 3], 6); assert (L, [1 -5 7 1], eps) ***** assert (isa (laguerreL (0, single (1)), 'single')) ***** assert (isa (laguerreL (1, single ([1 2])), 'single')) ***** assert (isa (laguerreL ([1 2], single ([1 2])), 'single')) 18 tests, 18 passed, 0 known failure, 0 skipped [inst/dirac.m]
/<<PKGBUILDDIR>>/inst/dirac.m
***** assert (isinf (dirac (0))) ***** assert (dirac (1) == 0) ***** assert (isnan (dirac (nan))) ***** assert (isequaln (dirac ([-1 1 0 eps inf -inf nan]), [0 0 inf 0 0 0 nan])) ***** error <complex values> dirac (1i) ***** assert (isa (dirac (single (0)), 'single')) 6 tests, 6 passed, 0 known failure, 0 skipped [inst/fibonacci.m]
/<<PKGBUILDDIR>>/inst/fibonacci.m
***** assert (isequal ( fibonacci (sym(0)), 0)) ***** assert (isequal ( fibonacci (sym(14)), sym(377))) ***** assert (isequal ( fibonacci (14), 377)) ***** test syms x assert (isequal (fibonacci (5,x), x^4 + 3*x^2 + 1)) 4 tests, 4 passed, 0 known failure, 0 skipped [inst/lambertw.m]
/<<PKGBUILDDIR>>/inst/lambertw.m
***** assert (isequal (lambertw (0), 0)) ***** assert (isequal (lambertw (0, 0), 0)) ***** assert (lambertw (-1/exp(1)), -1, 2*eps) ***** assert (lambertw (0, -1/exp(1)), -1, 2*eps) ***** assert (lambertw (-1, -1/exp(1)), -1, 2*eps) ***** test x = [1 2 3 pi 10 100 1000 12345]; W = lambertw (x); assert (W.*exp (W), x, -3*eps) ***** test x = [1 2 3 pi 10 100 1000 12345]; k = [-3 -2 -1 0 1 2 3 4]; W = lambertw (k, x); assert (W.*exp (W), x, -10*eps) ***** test % input shape preserved x = [0 1; 2 3]; b = x; W = lambertw (b, x); assert (W.*exp (W), x, -10*eps) ***** test % input shape preserved x = [0 1; 2 3]; b = 0; W = lambertw (b, x); assert (W.*exp (W), x, -10*eps) ***** test % input shape preserved x = 10; b = [0 1; 2 3]; W = lambertw (b, x); assert (W.*exp (W), x*ones (size (b)), -10*eps) ***** assert (isnan (lambertw (nan))) ***** test % limiting behaviour as z large k = 3; A = lambertw (k, 1e100); assert (abs (imag (A) - 2*pi*k) < 0.1) ***** test % limiting behaviour as z large, up imag axis k = 1; A = lambertw (k, 1e100*1i); assert (abs (imag (A) - (2*k+0.5)*pi) < 0.1) ***** test % limiting behaviour as z large, down imag axis k = -2; A = lambertw (k, -1e100*1i); assert (abs (imag (A) - (2*k-0.5)*pi) < 0.1) ***** test % limiting behaviour as z large, near branch k = 3; A = lambertw (k, -1e100); B = lambertw (k, -1e100 + 1i); C = lambertw (k, -1e100 - 1i); assert (abs (imag (A) - (2*k+1)*pi) < 0.1) assert (abs (imag (B) - (2*k+1)*pi) < 0.1) assert (abs (imag (C) - (2*k-1)*pi) < 0.1) ***** test % infinities and nan A = lambertw ([inf exp(1) -inf nan]); B = [inf 1 inf + pi*1i nan]; assert (isequaln (A, B)) ***** test % infinities and nan A = lambertw (3, [inf 1 -inf nan]); B = [inf + 2*3*pi*1i lambertw(3,1) inf + (2*3+1)*pi*1i nan]; assert (isequaln (A, B)) ***** test % infinities and nan A = lambertw ([0 1 2 0], [inf -inf nan exp(1)]); B = [inf inf+3*pi*1i nan 1]; assert (isequaln (A, B)) ***** test % scalar infinity z, vector b A = lambertw ([1 2 -3], inf); B = [lambertw(1, inf) lambertw(2, inf) lambertw(-3, inf)]; assert (isequal (A, B)) ***** test % scalar -infinity z, vector b A = lambertw ([1 2 -3], -inf); B = [lambertw(1, -inf) lambertw(2, -inf) lambertw(-3, -inf)]; assert (isequal (A, B)) ***** test % scalar z nan, vector b A = lambertw ([1 2 -3], nan); B = [nan nan nan]; assert (isequaln (A, B)) 21 tests, 21 passed, 0 known failure, 0 skipped [inst/finiteset.m]
/<<PKGBUILDDIR>>/inst/finiteset.m
***** test s1 = finiteset(sym(1), 2, 2); s2 = finiteset(sym(1), 2, 2, 2); assert (isequal (s1, s2)) ***** test s1 = finiteset(sym(0), 1); s2 = finiteset(sym(0), 2, 3); s = finiteset(sym(0), 1, 2, 3); assert (isequal (s1 + s2, s)) ***** test e = finiteset(); s = finiteset(sym(1)); s2 = e + s; assert (isequal (s, s2)) 3 tests, 3 passed, 0 known failure, 0 skipped [inst/findsymbols.m]
/<<PKGBUILDDIR>>/inst/findsymbols.m
***** test syms x b y n a arlo z = a*x + b*pi*sin (n) + exp (y) + exp (sym (1)) + arlo; s = findsymbols (z); assert (isequal ([s{:}], [a,arlo,b,n,x,y])) ***** test syms x s = findsymbols (x); assert (isequal (s{1}, x)) ***** test syms z x y a s = findsymbols ([x y; 1 a]); assert (isequal ([s{:}], [a x y])) ***** assert (isempty (findsymbols (sym (1)))) ***** assert (isempty (findsymbols (sym ([1 2])))) ***** assert (isempty (findsymbols (sym (nan)))) ***** assert (isempty (findsymbols (sym (inf)))) ***** assert (isempty (findsymbols (exp (sym (2))))) ***** test % empty sym for findsymbols, findsym, and symvar assert (isempty (findsymbols (sym([])))) assert (isempty (findsym (sym([])))) assert (isempty (symvar (sym([])))) ***** test % diff. assumptions make diff. symbols x1 = sym('x'); x2 = sym('x', 'positive'); f = x1*x2; assert (length (findsymbols (f)) == 2) ***** test % symfun or sym syms x f(y) a = f*x; b = f(y)*x; assert (isequal (findsymbols(a), {x y})) assert (isequal (findsymbols(b), {x y})) ***** test % findsymbols on symfun does not find the argnames (unless they % are on the RHS of course, this matches SMT 2014a). syms a x y f(x, y) = a; % const symfun assert (isequal (findsymbols(f), {a})) syms a x y f(x, y) = a*y; assert (isequal (findsymbols(f), {a y})) ***** test % sorts lexicographically, same as symvar *with single input* % (note symvar does something different with 2 inputs). syms A B a b x y X Y f = A*a*B*b*y*X*Y*x; assert (isequal (findsymbols(f), {A B X Y a b x y})) assert (isequal (symvar(f), [A B X Y a b x y])) ***** test % symbols in matpow syms x y syms n A = [sin(x) 2; y 1]; B = A^n; L = findsymbols(B); assert (isequal (L, {n x y})) ***** test % array of eq syms x y assert (isequal (findsymbols (2 == [2 x y]), {x y})) ***** test % array of ineq syms x y A = [x < 1 2*x < y x >= 2 3 <= x x != y]; assert (isequal (findsymbols (A), {x y})) 16 tests, 16 passed, 0 known failure, 0 skipped [inst/assume.m]
/<<PKGBUILDDIR>>/inst/assume.m
***** error <if you want output> a = assume('a', 'real') ***** error <cannot have only assumptions> assume positive integer ***** error <no assumptions> assume x y ***** error <should be the final> assume x clear real ***** error <algebraic assumptions are not supported> assume a>0 ***** error <only symbols> assume 'x/pi' integer ***** test syms x assume x positive a = assumptions(x); assert(strcmp(a, 'x: positive')) assume x even a = assumptions(x); assert(strcmp(a, 'x: even')) ***** test % multiple assumptions syms x assume x positive integer [tilde, a] = assumptions(x, 'dict'); assert(a{1}.integer) assert(a{1}.positive) ***** test % does workspace syms x positive x2 = x; f = sin(x); assume x negative a = assumptions(x); assert(strcmp(a, 'x: negative')) a = assumptions(x2); assert(strcmp(a, 'x: negative')) a = assumptions(f); assert(strcmp(a, 'x: negative')) ***** error <undefined> % does not create new variable x clear x assume x real ***** error <undefined> % no explicit variable named x clear x f = 2*sym('x'); assume x real ***** test % clear does workspace syms x positive f = 2*x; assume x clear assert (isempty (assumptions (f))); assert (isempty (assumptions ())); ***** test syms x y f = sin (2*x); assume x y real assert (strcmp (assumptions (x), 'x: real')) assert (strcmp (assumptions (y), 'y: real')) assert (strcmp (assumptions (f), 'x: real')) ***** test syms x y f = sin (2*x); assume x y positive even assert (strcmp (assumptions (x), 'x: positive, even') || strcmp (assumptions (x), 'x: even, positive')) assert (strcmp (assumptions (y), 'y: positive, even') || strcmp (assumptions (y), 'y: even, positive')) assert (strcmp (assumptions (f), 'x: positive, even') || strcmp (assumptions (f), 'x: even, positive')) ***** test % works from variable names not symbols syms x y a = [x y]; assume a real assert (strcmp (assumptions (x), 'x: real')) assert (strcmp (assumptions (y), 'y: real')) ***** test % works from variable names not symbols y = sym('x'); f = 2*y; assume y real assert (strcmp (assumptions (f), 'x: real')) ***** test % matrix of symbols syms a b c d A = [a b; c d]; assume A real assert (strcmp (assumptions (a), 'a: real')) assert (strcmp (assumptions (b), 'b: real')) assert (strcmp (assumptions (c), 'c: real')) assert (strcmp (assumptions (d), 'd: real')) ***** test % assume after symfun clear x syms f(x) assume x real assert (~ isempty (assumptions (formula (f)))) assert (~ isempty (assumptions (argnames (f)))) 18 tests, 18 passed, 0 known failure, 0 skipped [inst/digits.m]
/<<PKGBUILDDIR>>/inst/digits.m
***** test orig = digits(32); % to reset later m = digits(64); p = vpa(sym(pi)); assert (abs (double (sin(p))) < 1e-64) n = digits(m); assert (n == 64) p = vpa(sym(pi)); assert (abs (double (sin(p))) < 1e-32) assert (abs (double (sin(p))) > 1e-40) digits(orig) 1 test, 1 passed, 0 known failure, 0 skipped [inst/poly2sym.m]
/<<PKGBUILDDIR>>/inst/poly2sym.m
***** shared x,y,a,b,c,p syms x y a b c p = x^3 + 2*x^2 + 3*x + 4; ***** assert(isAlways( poly2sym([1 2 3 4]) == p )) ***** assert(isAlways( poly2sym([1 2 3 4],x) == p )) ***** assert(isAlways( poly2sym([1 2 3 4],y) == subs(p,x,y) )) ***** assert(isAlways( poly2sym([1 2 3 4],5) == subs(p,x,5) )) ***** assert(isequal( poly2sym ([1]), 1 )) ***** assert(isequal( poly2sym ([]), 0 )) ***** assert(isAlways( poly2sym(sym([1 2 3 4]),x) == p )) ***** assert(isAlways( poly2sym([a b c],x) == a*x^2 + b*x + c )) ***** assert(isAlways( poly2sym([a b c]) == a*x^2 + b*x + c )) ***** assert(isequal( poly2sym(sym([])), 0 )) ***** assert(isAlways( poly2sym({sym(1) sym(2)}, x) == x + 2 )) ***** assert(isequal( poly2sym ({1}), 1 )) ***** assert(isequal( poly2sym ({}), 0 )) ***** assert(isequal( poly2sym ({1}, x), 1 )) ***** assert(isequal( poly2sym ({}, x), 0 )) ***** assert(isAlways( poly2sym([x x], x) == x^2 + x )) ***** test % mixed cell array with doubles and syms assert (isequal (poly2sym ({2.0 sym(3) int64(4)}), 2*x^2 + 3*x + 4)) ***** test % string for x p = poly2sym ([1 2], 's'); syms s assert (isequal (p, s + 2)) 18 tests, 18 passed, 0 known failure, 0 skipped Checking C++ files ... Done running the unit tests. Summary: 2426 tests, 2394 passed, 31 known failures, 0 skipped Some tests failed. Giving up... make: *** [debian/rules:5: binary] Error 1 dpkg-buildpackage: error: debian/rules binary subprocess returned exit status 2 -------------------------------------------------------------------------------- The above is just how the build ends and not necessarily the most relevant part. If required, the full build log is available here: https://people.debian.org/~sanvila/build-logs/202410/ About the archive rebuild: The build was made on virtual machines from AWS, using sbuild and a reduced chroot with only build-essential packages. If you could not reproduce the bug please contact me privately, as I am willing to provide ssh access to a virtual machine where the bug is fully reproducible. If this is really a bug in one of the build-depends, please use reassign and affects, so that this is still visible in the BTS web page for this package. Thanks.