Your message dated Wed, 02 Aug 2023 01:04:18 +0000
with message-id <e1qr0hi-005v8d...@fasolo.debian.org>
and subject line Bug#1042574: Removed package(s) from unstable
has caused the Debian Bug report #1026539,
regarding theano: FTBFS: dh_auto_test: error: pybuild --test --test-pytest -i 
python{version} -p 3.10 returned exit code 13
to be marked as done.

This means that you claim that the problem has been dealt with.
If this is not the case it is now your responsibility to reopen the
Bug report if necessary, and/or fix the problem forthwith.

(NB: If you are a system administrator and have no idea what this
message is talking about, this may indicate a serious mail system
misconfiguration somewhere. Please contact ow...@bugs.debian.org
immediately.)


-- 
1026539: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1026539
Debian Bug Tracking System
Contact ow...@bugs.debian.org with problems
--- Begin Message ---
Source: theano
Version: 1.0.5+dfsg-8
Severity: serious
Justification: FTBFS
Tags: bookworm sid ftbfs
User: lu...@debian.org
Usertags: ftbfs-20221220 ftbfs-bookworm

Hi,

During a rebuild of all packages in sid, your package failed to build
on amd64.


Relevant part (hopefully):
> =================================== FAILURES 
> ===================================
> ____________ TestDownsampleFactorMax.test_DownsampleFactorMaxStride 
> ____________
> 
> self = <theano.tensor.signal.tests.test_pool.TestDownsampleFactorMax object 
> at 0x7f9a14696d10>
> 
>     def test_DownsampleFactorMaxStride(self):
>         rng = np.random.RandomState(utt.fetch_seed())
>         # maxpool, stride, ignore_border, input, output sizes
>         examples = (
>             ((1, 1), (1, 1), True, (4, 10, 16, 16), (4, 10, 16, 16)),
>             ((1, 1), (5, 7), True, (4, 10, 16, 16), (4, 10, 4, 3)),
>             ((1, 1), (1, 1), False, (4, 10, 16, 16), (4, 10, 16, 16)),
>             ((1, 1), (5, 7), False, (4, 10, 16, 16), (4, 10, 4, 3)),
>             ((3, 3), (1, 1), True, (4, 10, 16, 16), (4, 10, 14, 14)),
>             ((3, 3), (3, 3), True, (4, 10, 16, 16), (4, 10, 5, 5)),
>             ((3, 3), (5, 7), True, (4, 10, 16, 16), (4, 10, 3, 2)),
>             ((3, 3), (1, 1), False, (4, 10, 16, 16), (4, 10, 14, 14)),
>             ((3, 3), (3, 3), False, (4, 10, 16, 16), (4, 10, 6, 6)),
>             ((3, 3), (5, 7), False, (4, 10, 16, 16), (4, 10, 4, 3)),
>             ((5, 3), (1, 1), True, (4, 10, 16, 16), (4, 10, 12, 14)),
>             ((5, 3), (3, 3), True, (4, 10, 16, 16), (4, 10, 4, 5)),
>             ((5, 3), (5, 7), True, (4, 10, 16, 16), (4, 10, 3, 2)),
>             ((5, 3), (1, 1), False, (4, 10, 16, 16), (4, 10, 12, 14)),
>             ((5, 3), (3, 3), False, (4, 10, 16, 16), (4, 10, 5, 6)),
>             ((5, 3), (5, 7), False, (4, 10, 16, 16), (4, 10, 4, 3)),
>             ((16, 16), (1, 1), True, (4, 10, 16, 16), (4, 10, 1, 1)),
>             ((16, 16), (5, 7), True, (4, 10, 16, 16), (4, 10, 1, 1)),
>             ((16, 16), (1, 1), False, (4, 10, 16, 16), (4, 10, 1, 1)),
>             ((16, 16), (5, 7), False, (4, 10, 16, 16), (4, 10, 1, 1)),
>             ((3,), (5,), True, (16,), (3,)),
>             ((3,), (5,), True, (2, 16,), (2, 3,)),
>             ((5,), (3,), True, (2, 3, 16,), (2, 3, 4,)),
>             ((5, 1, 3), (3, 3, 3), True, (2, 16, 16, 16), (2, 4, 6, 5)),
>             ((5, 1, 3), (3, 3, 3), True, (4, 2, 16, 16, 16), (4, 2, 4, 6, 5)),
>         )
>     
>         for example, mode in product(examples, ['max',
>                                                 'sum',
>                                                 'average_inc_pad',
>                                                 'average_exc_pad']):
>             (maxpoolshp, stride, ignore_border, inputshp, outputshp) = example
>             # generate random images
>             imval = rng.rand(*inputshp)
>             images = theano.shared(imval)
>             # Pool op
>             numpy_output_val = \
> >               self.numpy_max_pool_nd_stride(imval, maxpoolshp,
>                                               ignore_border, stride,
>                                               mode)
> 
> theano/tensor/signal/tests/test_pool.py:406: 
> _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
> _ 
> 
> input = array([[[[7.00437122e-01, 8.44186643e-01, 6.76514336e-01, ...,
>           7.00844752e-01, 2.93228106e-01, 7.74479454e-0...    
> [8.75885705e-01, 9.43403362e-01, 2.46839958e-01, ...,
>           6.39886889e-01, 3.33503280e-01, 3.56632048e-04]]]])
> ws = (1, 1), ignore_border = True, stride = (1, 1), mode = 'max'
> 
>     @staticmethod
>     def numpy_max_pool_nd_stride(input, ws, ignore_border=False, stride=None,
>                                  mode='max'):
>         '''Helper function, implementing pooling in pure numpy
>            this function provides stride input to indicate the stide size
>            for the pooling regions. if not indicated, stride == ws.'''
>         nd = len(ws)
>         if stride is None:
>             stride = ws
>         assert len(stride) == len(ws)
>     
>         out_shp = list(input.shape[:-nd])
>         for i in range(nd):
>             out = 0
>             if input.shape[-nd + i] - ws[i] >= 0:
>                 out = (input.shape[-nd + i] - ws[i]) // stride[i] + 1
>             if not ignore_border:
>                 if out > 0:
>                     if input.shape[-nd + i] - ((out - 1) * stride[i] + ws[i]) 
> > 0:
>                         if input.shape[-nd + i] - out * stride[i] > 0:
>                             out += 1
>                 else:
>                     if input.shape[-nd + i] > 0:
>                         out += 1
>             out_shp.append(out)
>     
>         func = np.max
>         if mode == 'sum':
>             func = np.sum
>         elif mode != 'max':
>             func = np.average
>     
>         output_val = np.zeros(out_shp)
>         for l in np.ndindex(*input.shape[:-nd]):
>             for r in np.ndindex(*output_val.shape[-nd:]):
>                 region = []
>                 for i in range(nd):
>                     r_stride = r[i] * stride[i]
>                     r_end = builtins.min(r_stride + ws[i], input.shape[-nd + 
> i])
>                     region.append(slice(r_stride, r_end))
> >               patch = input[l][region]
> E               IndexError: only integers, slices (`:`), ellipsis (`...`), 
> numpy.newaxis (`None`) and integer or boolean arrays are valid indices
> 
> theano/tensor/signal/tests/test_pool.py:304: IndexError
> ________ TestDownsampleFactorMax.test_DownsampleFactorMaxPaddingStride 
> _________
> 
> self = <theano.tensor.signal.tests.test_pool.TestDownsampleFactorMax object 
> at 0x7f9a14696980>
> 
>     def test_DownsampleFactorMaxPaddingStride(self):
>         ignore_border = True  # padding does not support ignore_border=False
>         rng = np.random.RandomState(utt.fetch_seed())
>         # maxpool, stride, pad, input sizes
>         examples = (
>             ((3,), (2,), (2,), (5,)),
>             ((3,), (2,), (2,), (4, 5)),
>             ((3,), (2,), (2,), (4, 2, 5, 5)),
>             ((3, 3), (2, 2), (2, 2), (4, 2, 5, 5)),
>             ((4, 4), (2, 2), (1, 2), (4, 2, 5, 5)),
>             ((3, 4), (1, 1), (2, 1), (4, 2, 5, 6)),
>             ((4, 3), (1, 2), (0, 0), (4, 2, 6, 5)),
>             ((2, 2), (2, 2), (1, 1), (4, 2, 5, 5)),
>             ((4, 3, 2), (1, 2, 2), (0, 2, 1), (4, 6, 6, 5)),
>             ((4, 3, 2), (1, 2, 2), (0, 2, 1), (4, 2, 6, 5, 5)),
>         )
>         for example, mode in product(examples,
>                                      ['max', 'sum', 'average_inc_pad',
>                                       'average_exc_pad']):
>             (maxpoolshp, stridesize, padsize, inputsize) = example
>             imval = rng.rand(*inputsize) - 0.5
>             images = theano.shared(imval)
>     
> >           numpy_output_val = self.numpy_max_pool_nd_stride_pad(
>                 imval, maxpoolshp, ignore_border,
>                 stridesize, padsize, mode)
> 
> theano/tensor/signal/tests/test_pool.py:484: 
> _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
> _ 
> 
> input = array([0.20043712, 0.34418664, 0.17651434, 0.22785806, 0.45145796])
> ws = (3,), ignore_border = True, stride = (2,), pad = (2,), mode = 'max'
> 
>     @staticmethod
>     def numpy_max_pool_nd_stride_pad(
>             input, ws, ignore_border=True, stride=None, pad=None, mode='max'):
>         assert ignore_border
>         nd = len(ws)
>         if pad is None:
>             pad = (0,) * nd
>         if stride is None:
>             stride = (0,) * nd
>         assert len(pad) == len(ws) == len(stride)
>         assert all(ws[i] > pad[i] for i in range(nd))
>     
>         def pad_img(x):
>             # initialize padded input
>             y = np.zeros(
>                 x.shape[0:-nd] +
>                 tuple(x.shape[-nd + i] + pad[i] * 2 for i in range(nd)),
>                 dtype=x.dtype)
>             # place the unpadded input in the center
>             block = ((slice(None),) * (len(x.shape) - nd) +
>                      tuple(slice(pad[i], x.shape[-nd + i] + pad[i])
>                            for i in range(nd)))
>             y[block] = x
>             return y
>     
>         pad_img_shp = list(input.shape[:-nd])
>         out_shp = list(input.shape[:-nd])
>         for i in range(nd):
>             padded_size = input.shape[-nd + i] + 2 * pad[i]
>             pad_img_shp.append(padded_size)
>             out_shp.append((padded_size - ws[i]) // stride[i] + 1)
>         output_val = np.zeros(out_shp)
>         padded_input = pad_img(input)
>         func = np.max
>         if mode == 'sum':
>             func = np.sum
>         elif mode != 'max':
>             func = np.average
>         inc_pad = mode == 'average_inc_pad'
>     
>         for l in np.ndindex(*input.shape[:-nd]):
>             for r in np.ndindex(*output_val.shape[-nd:]):
>                 region = []
>                 for i in range(nd):
>                     r_stride = r[i] * stride[i]
>                     r_end = builtins.min(r_stride + ws[i], pad_img_shp[-nd + 
> i])
>                     if not inc_pad:
>                         r_stride = builtins.max(r_stride, pad[i])
>                         r_end = builtins.min(r_end, input.shape[-nd + i] + 
> pad[i])
>                     region.append(slice(r_stride, r_end))
> >               patch = padded_input[l][region]
> E               IndexError: only integers, slices (`:`), ellipsis (`...`), 
> numpy.newaxis (`None`) and integer or boolean arrays are valid indices
> 
> theano/tensor/signal/tests/test_pool.py:197: IndexError
> =============================== warnings summary 
> ===============================
> theano/gof/cmodule.py:23
>   /<<PKGBUILDDIR>>/theano/gof/cmodule.py:23: DeprecationWarning: 
>   
>     `numpy.distutils` is deprecated since NumPy 1.23.0, as a result
>     of the deprecation of `distutils` itself. It will be removed for
>     Python >= 3.12. For older Python versions it will remain present.
>     It is recommended to use `setuptools < 60.0` for those Python versions.
>     For more details, see:
>       https://numpy.org/devdocs/reference/distutils_status_migration.html 
>   
>   
>     import numpy.distutils
> 
> theano/scalar/basic.py:2323
>   /<<PKGBUILDDIR>>/theano/scalar/basic.py:2323: DeprecationWarning: `np.bool` 
> is a deprecated alias for the builtin `bool`. To silence this warning, use 
> `bool` by itself. Doing this will not modify any behavior and is safe. If you 
> specifically wanted the numpy scalar type, use `np.bool_` here.
>   Deprecated in NumPy 1.20; for more details and guidance: 
> https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
>     self.ctor = getattr(np, o_type.dtype)
> 
> theano/tensor/signal/tests/test_conv.py: 3081 warnings
> theano/tensor/signal/tests/test_pool.py: 11605 warnings
>   /<<PKGBUILDDIR>>/theano/tensor/basic.py:381: DeprecationWarning: 
> `np.complex` is a deprecated alias for the builtin `complex`. To silence this 
> warning, use `complex` by itself. Doing this will not modify any behavior and 
> is safe. If you specifically wanted the numpy scalar type, use 
> `np.complex128` here.
>   Deprecated in NumPy 1.20; for more details and guidance: 
> https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
>     np.complex(data)  # works for all numeric scalars
> 
> theano/tensor/signal/tests/test_pool.py::TestDownsampleFactorMax::test_DownsampleFactorMax_hessian
>   /<<PKGBUILDDIR>>/theano/tests/breakpoint.py:3: DeprecationWarning: the imp 
> module is deprecated in favour of importlib and slated for removal in Python 
> 3.12; see the module's documentation for alternative uses
>     import imp
> 
> theano/tensor/signal/tests/test_pool.py::TestDownsampleFactorMax::test_max_pool_3d_3D_deprecated_interface
>   /<<PKGBUILDDIR>>/theano/tensor/signal/tests/test_pool.py:911: UserWarning: 
> DEPRECATION: the 'ds' parameter is not going to exist anymore as it is going 
> to be replaced by the parameter 'ws'.
>     output = pool_3d(input=images,
> 
> theano/tensor/signal/tests/test_pool.py::TestDownsampleFactorMax::test_max_pool_3d_3D_deprecated_interface
>   /<<PKGBUILDDIR>>/theano/tensor/signal/tests/test_pool.py:911: UserWarning: 
> DEPRECATION: the 'st' parameter is not going to exist anymore as it is going 
> to be replaced by the parameter 'stride'.
>     output = pool_3d(input=images,
> 
> theano/tensor/signal/tests/test_pool.py::TestDownsampleFactorMax::test_max_pool_3d_3D_deprecated_interface
>   /<<PKGBUILDDIR>>/theano/tensor/signal/tests/test_pool.py:911: UserWarning: 
> DEPRECATION: the 'padding' parameter is not going to exist anymore as it is 
> going to be replaced by the parameter 'pad'.
>     output = pool_3d(input=images,
> 
> theano/tensor/signal/tests/test_pool.py::TestDownsampleFactorMax::test_pooling_with_tensor_vars_deprecated_interface
>   /<<PKGBUILDDIR>>/theano/tensor/signal/tests/test_pool.py:1095: UserWarning: 
> DEPRECATION: the 'ds' parameter is not going to exist anymore as it is going 
> to be replaced by the parameter 'ws'.
>     y = pool_2d(input=x,
> 
> theano/tensor/signal/tests/test_pool.py::TestDownsampleFactorMax::test_pooling_with_tensor_vars_deprecated_interface
>   /<<PKGBUILDDIR>>/theano/tensor/signal/tests/test_pool.py:1095: UserWarning: 
> DEPRECATION: the 'st' parameter is not going to exist anymore as it is going 
> to be replaced by the parameter 'stride'.
>     y = pool_2d(input=x,
> 
> theano/tensor/signal/tests/test_pool.py::TestDownsampleFactorMax::test_pooling_with_tensor_vars_deprecated_interface
>   /<<PKGBUILDDIR>>/theano/tensor/signal/tests/test_pool.py:1095: UserWarning: 
> DEPRECATION: the 'padding' parameter is not going to exist anymore as it is 
> going to be replaced by the parameter 'pad'.
>     y = pool_2d(input=x,
> 
> theano/tensor/signal/tests/test_pool.py::TestDownsampleFactorMax::test_pooling_with_tensor_vars_deprecated_interface
>   /<<PKGBUILDDIR>>/theano/tensor/signal/tests/test_pool.py:1111: UserWarning: 
> DEPRECATION: the 'ds' parameter is not going to exist anymore as it is going 
> to be replaced by the parameter 'ws'.
>     y = pool_2d(input=x,
> 
> theano/tensor/signal/tests/test_pool.py::TestDownsampleFactorMax::test_pooling_with_tensor_vars_deprecated_interface
>   /<<PKGBUILDDIR>>/theano/tensor/signal/tests/test_pool.py:1111: UserWarning: 
> DEPRECATION: the 'st' parameter is not going to exist anymore as it is going 
> to be replaced by the parameter 'stride'.
>     y = pool_2d(input=x,
> 
> theano/tensor/signal/tests/test_pool.py::TestDownsampleFactorMax::test_pooling_with_tensor_vars_deprecated_interface
>   /<<PKGBUILDDIR>>/theano/tensor/signal/tests/test_pool.py:1111: UserWarning: 
> DEPRECATION: the 'padding' parameter is not going to exist anymore as it is 
> going to be replaced by the parameter 'pad'.
>     y = pool_2d(input=x,
> 
> -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
> =========================== short test summary info 
> ============================
> FAILED 
> theano/tensor/signal/tests/test_pool.py::TestDownsampleFactorMax::test_DownsampleFactorMaxStride
> FAILED 
> theano/tensor/signal/tests/test_pool.py::TestDownsampleFactorMax::test_DownsampleFactorMaxPaddingStride
> ========== 2 failed, 424 passed, 14698 warnings in 259.23s (0:04:19) 
> ===========


The full build log is available from:
http://qa-logs.debian.net/2022/12/20/theano_1.0.5+dfsg-8_unstable.log

All bugs filed during this archive rebuild are listed at:
https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=ftbfs-20221220;users=lu...@debian.org
or:
https://udd.debian.org/bugs/?release=na&merged=ign&fnewerval=7&flastmodval=7&fusertag=only&fusertagtag=ftbfs-20221220&fusertaguser=lu...@debian.org&allbugs=1&cseverity=1&ctags=1&caffected=1#results

A list of current common problems and possible solutions is available at
http://wiki.debian.org/qa.debian.org/FTBFS . You're welcome to contribute!

If you reassign this bug to another package, please mark it as 'affects'-ing
this package. See https://www.debian.org/Bugs/server-control#affects

If you fail to reproduce this, please provide a build log and diff it with mine
so that we can identify if something relevant changed in the meantime.

--- End Message ---
--- Begin Message ---
Version: 1.0.5+dfsg-8+rm

Dear submitter,

as the package theano has just been removed from the Debian archive
unstable we hereby close the associated bug reports.  We are sorry
that we couldn't deal with your issue properly.

For details on the removal, please see https://bugs.debian.org/1042574

The version of this package that was in Debian prior to this removal
can still be found using https://snapshot.debian.org/.

Please note that the changes have been done on the master archive and
will not propagate to any mirrors until the next dinstall run at the
earliest.

This message was generated automatically; if you believe that there is
a problem with it please contact the archive administrators by mailing
ftpmas...@ftp-master.debian.org.

Debian distribution maintenance software
pp.
Scott Kitterman (the ftpmaster behind the curtain)

--- End Message ---

Reply via email to