Source: statsmodels Version: 0.13.5+dfsg-4 Severity: serious Tags: ftbfs https://buildd.debian.org/status/logs.php?pkg=statsmodels&ver=0.13.5%2Bdfsg-4%2Bb1
... =================================== FAILURES =================================== _______________________ TestDiscretizedGamma.test_basic ________________________ self = <statsmodels.distributions.tests.test_discrete.TestDiscretizedGamma object at 0xefb687f0> def test_basic(self): d_offset = self.d_offset ddistr = self.ddistr paramg = self.paramg paramd = self.paramd shapes = self.shapes start_params = self.start_params np.random.seed(987146) dp = DiscretizedCount(ddistr, d_offset) assert dp.shapes == shapes xi = np.arange(5) p = dp._pmf(xi, *paramd) cdf1 = ddistr.cdf(xi, *paramg) p1 = np.diff(cdf1) assert_allclose(p[: len(p1)], p1, rtol=1e-13) cdf = dp._cdf(xi, *paramd) assert_allclose(cdf[: len(cdf1) - 1], cdf1[1:], rtol=1e-13) # check that scipy dispatch methods work p2 = dp.pmf(xi, *paramd) assert_allclose(p2, p, rtol=1e-13) cdf2 = dp.cdf(xi, *paramd) assert_allclose(cdf2, cdf, rtol=1e-13) sf = dp.sf(xi, *paramd) assert_allclose(sf, 1 - cdf, rtol=1e-13) nobs = 2000 xx = dp.rvs(*paramd, size=nobs) # , random_state=987146) # check that we go a non-trivial rvs assert len(xx) == nobs assert xx.var() > 0.001 mod = DiscretizedModel(xx, distr=dp) res = mod.fit(start_params=start_params) p = mod.predict(res.params, which="probs") args = self.convert_params(res.params) p1 = -np.diff(ddistr.sf(np.arange(21), *args)) assert_allclose(p, p1, rtol=1e-13) # using cdf limits precision to computation around 1 p1 = np.diff(ddistr.cdf(np.arange(21), *args)) assert_allclose(p, p1, rtol=1e-13, atol=1e-15) freq = np.bincount(xx.astype(int)) # truncate at last observed k = len(freq) if k > 10: # reduce low count bins for heavy tailed distributions k = 10 freq[k - 1] += freq[k:].sum() freq = freq[:k] p = mod.predict(res.params, which="probs", k_max=k) p[k - 1] += 1 - p[:k].sum() tchi2 = stats.chisquare(freq, p[:k] * nobs) assert tchi2.pvalue > 0.01 # estimated distribution methods rvs, ppf # frozen distribution with estimated parameters # Todo results method dfr = mod.get_distr(res.params) nobs_rvs = 500 rvs = dfr.rvs(size=nobs_rvs) > freq = np.bincount(rvs) ../.pybuild/cpython3_3.11_statsmodels/build/statsmodels/distributions/tests/test_discrete.py:302: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ args = (array([2, 0, 3, 1, 1, 2, 2, 5, 1, 1, 1, 3, 2, 1, 2, 0, 2, 2, 4, 2, 2, 1, 3, 2, 1, 1, 1, 1, 4, 2, 4, 2, 1, 1, 2... 2, 4, 1, 2, 1, 2, 0, 1, 1, 2, 1, 2, 2, 2, 4, 0, 4, 1, 1, 2, 2, 1, 1, 3, 2, 3, 2, 1, 3, 1, 1, 2], dtype=int64),) kwargs = {} relevant_args = (array([2, 0, 3, 1, 1, 2, 2, 5, 1, 1, 1, 3, 2, 1, 2, 0, 2, 2, 4, 2, 2, 1, 3, 2, 1, 1, 1, 1, 4, 2, 4, 2, 1, 1, 2..., 1, 2, 1, 2, 0, 1, 1, 2, 1, 2, 2, 2, 4, 0, 4, 1, 1, 2, 2, 1, 1, 3, 2, 3, 2, 1, 3, 1, 1, 2], dtype=int64), None) > ??? E TypeError: Cannot cast array data from dtype('int64') to dtype('int32') according to the rule 'safe' <__array_function__ internals>:200: TypeError ----------------------------- Captured stdout call ----------------------------- Optimization terminated successfully. Current function value: 1.491508 Iterations: 64 Function evaluations: 122 ____________________ TestDiscretizedExponential.test_basic _____________________ self = <statsmodels.distributions.tests.test_discrete.TestDiscretizedExponential object at 0xef920d90> def test_basic(self): d_offset = self.d_offset ddistr = self.ddistr paramg = self.paramg paramd = self.paramd shapes = self.shapes start_params = self.start_params np.random.seed(987146) dp = DiscretizedCount(ddistr, d_offset) assert dp.shapes == shapes xi = np.arange(5) p = dp._pmf(xi, *paramd) cdf1 = ddistr.cdf(xi, *paramg) p1 = np.diff(cdf1) assert_allclose(p[: len(p1)], p1, rtol=1e-13) cdf = dp._cdf(xi, *paramd) assert_allclose(cdf[: len(cdf1) - 1], cdf1[1:], rtol=1e-13) # check that scipy dispatch methods work p2 = dp.pmf(xi, *paramd) assert_allclose(p2, p, rtol=1e-13) cdf2 = dp.cdf(xi, *paramd) assert_allclose(cdf2, cdf, rtol=1e-13) sf = dp.sf(xi, *paramd) assert_allclose(sf, 1 - cdf, rtol=1e-13) nobs = 2000 xx = dp.rvs(*paramd, size=nobs) # , random_state=987146) # check that we go a non-trivial rvs assert len(xx) == nobs assert xx.var() > 0.001 mod = DiscretizedModel(xx, distr=dp) res = mod.fit(start_params=start_params) p = mod.predict(res.params, which="probs") args = self.convert_params(res.params) p1 = -np.diff(ddistr.sf(np.arange(21), *args)) assert_allclose(p, p1, rtol=1e-13) # using cdf limits precision to computation around 1 p1 = np.diff(ddistr.cdf(np.arange(21), *args)) assert_allclose(p, p1, rtol=1e-13, atol=1e-15) freq = np.bincount(xx.astype(int)) # truncate at last observed k = len(freq) if k > 10: # reduce low count bins for heavy tailed distributions k = 10 freq[k - 1] += freq[k:].sum() freq = freq[:k] p = mod.predict(res.params, which="probs", k_max=k) p[k - 1] += 1 - p[:k].sum() tchi2 = stats.chisquare(freq, p[:k] * nobs) assert tchi2.pvalue > 0.01 # estimated distribution methods rvs, ppf # frozen distribution with estimated parameters # Todo results method dfr = mod.get_distr(res.params) nobs_rvs = 500 rvs = dfr.rvs(size=nobs_rvs) > freq = np.bincount(rvs) ../.pybuild/cpython3_3.11_statsmodels/build/statsmodels/distributions/tests/test_discrete.py:302: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ args = (array([ 0, 0, 5, 2, 1, 1, 6, 1, 2, 1, 3, 3, 1, 2, 1, 9, 1, 10, 4, 1, 7, 1, 2, 13, 1, 4,... 2, 0, 10, 11, 5, 0, 7, 1, 8, 1, 6, 0, 1, 1, 3, 0, 2, 1, 4, 1, 7, 0, 7, 9], dtype=int64),) kwargs = {} relevant_args = (array([ 0, 0, 5, 2, 1, 1, 6, 1, 2, 1, 3, 3, 1, 2, 1, 9, 1, 10, 4, 1, 7, 1, 2, 13, 1, 4,... 0, 10, 11, 5, 0, 7, 1, 8, 1, 6, 0, 1, 1, 3, 0, 2, 1, 4, 1, 7, 0, 7, 9], dtype=int64), None) > ??? E TypeError: Cannot cast array data from dtype('int64') to dtype('int32') according to the rule 'safe' <__array_function__ internals>:200: TypeError ----------------------------- Captured stdout call ----------------------------- Optimization terminated successfully. Current function value: 2.617352 Iterations: 22 Function evaluations: 44 _______________________ TestDiscretizedLomax.test_basic ________________________ self = <statsmodels.distributions.tests.test_discrete.TestDiscretizedLomax object at 0xef9209d0> def test_basic(self): d_offset = self.d_offset ddistr = self.ddistr paramg = self.paramg paramd = self.paramd shapes = self.shapes start_params = self.start_params np.random.seed(987146) dp = DiscretizedCount(ddistr, d_offset) assert dp.shapes == shapes xi = np.arange(5) p = dp._pmf(xi, *paramd) cdf1 = ddistr.cdf(xi, *paramg) p1 = np.diff(cdf1) assert_allclose(p[: len(p1)], p1, rtol=1e-13) cdf = dp._cdf(xi, *paramd) assert_allclose(cdf[: len(cdf1) - 1], cdf1[1:], rtol=1e-13) # check that scipy dispatch methods work p2 = dp.pmf(xi, *paramd) assert_allclose(p2, p, rtol=1e-13) cdf2 = dp.cdf(xi, *paramd) assert_allclose(cdf2, cdf, rtol=1e-13) sf = dp.sf(xi, *paramd) assert_allclose(sf, 1 - cdf, rtol=1e-13) nobs = 2000 xx = dp.rvs(*paramd, size=nobs) # , random_state=987146) # check that we go a non-trivial rvs assert len(xx) == nobs assert xx.var() > 0.001 mod = DiscretizedModel(xx, distr=dp) res = mod.fit(start_params=start_params) p = mod.predict(res.params, which="probs") args = self.convert_params(res.params) p1 = -np.diff(ddistr.sf(np.arange(21), *args)) assert_allclose(p, p1, rtol=1e-13) # using cdf limits precision to computation around 1 p1 = np.diff(ddistr.cdf(np.arange(21), *args)) assert_allclose(p, p1, rtol=1e-13, atol=1e-15) freq = np.bincount(xx.astype(int)) # truncate at last observed k = len(freq) if k > 10: # reduce low count bins for heavy tailed distributions k = 10 freq[k - 1] += freq[k:].sum() freq = freq[:k] p = mod.predict(res.params, which="probs", k_max=k) p[k - 1] += 1 - p[:k].sum() tchi2 = stats.chisquare(freq, p[:k] * nobs) assert tchi2.pvalue > 0.01 # estimated distribution methods rvs, ppf # frozen distribution with estimated parameters # Todo results method dfr = mod.get_distr(res.params) nobs_rvs = 500 rvs = dfr.rvs(size=nobs_rvs) > freq = np.bincount(rvs) ../.pybuild/cpython3_3.11_statsmodels/build/statsmodels/distributions/tests/test_discrete.py:302: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ args = (array([ 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 1, 0, 0, 4, 0, 0,... 0, 0, 2, 3, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2], dtype=int64),) kwargs = {} relevant_args = (array([ 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 1, 0, 0, 4, 0, 0,... 0, 2, 3, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2], dtype=int64), None) > ??? E TypeError: Cannot cast array data from dtype('int64') to dtype('int32') according to the rule 'safe' <__array_function__ internals>:200: TypeError ----------------------------- Captured stdout call ----------------------------- Optimization terminated successfully. Current function value: 1.294980 Iterations: 51 Function evaluations: 101 _______________________ TestDiscretizedBurr12.test_basic _______________________ self = <statsmodels.distributions.tests.test_discrete.TestDiscretizedBurr12 object at 0xef920990> def test_basic(self): d_offset = self.d_offset ddistr = self.ddistr paramg = self.paramg paramd = self.paramd shapes = self.shapes start_params = self.start_params np.random.seed(987146) dp = DiscretizedCount(ddistr, d_offset) assert dp.shapes == shapes xi = np.arange(5) p = dp._pmf(xi, *paramd) cdf1 = ddistr.cdf(xi, *paramg) p1 = np.diff(cdf1) assert_allclose(p[: len(p1)], p1, rtol=1e-13) cdf = dp._cdf(xi, *paramd) assert_allclose(cdf[: len(cdf1) - 1], cdf1[1:], rtol=1e-13) # check that scipy dispatch methods work p2 = dp.pmf(xi, *paramd) assert_allclose(p2, p, rtol=1e-13) cdf2 = dp.cdf(xi, *paramd) assert_allclose(cdf2, cdf, rtol=1e-13) sf = dp.sf(xi, *paramd) assert_allclose(sf, 1 - cdf, rtol=1e-13) nobs = 2000 xx = dp.rvs(*paramd, size=nobs) # , random_state=987146) # check that we go a non-trivial rvs assert len(xx) == nobs assert xx.var() > 0.001 mod = DiscretizedModel(xx, distr=dp) res = mod.fit(start_params=start_params) p = mod.predict(res.params, which="probs") args = self.convert_params(res.params) p1 = -np.diff(ddistr.sf(np.arange(21), *args)) assert_allclose(p, p1, rtol=1e-13) # using cdf limits precision to computation around 1 p1 = np.diff(ddistr.cdf(np.arange(21), *args)) assert_allclose(p, p1, rtol=1e-13, atol=1e-15) freq = np.bincount(xx.astype(int)) # truncate at last observed k = len(freq) if k > 10: # reduce low count bins for heavy tailed distributions k = 10 freq[k - 1] += freq[k:].sum() freq = freq[:k] p = mod.predict(res.params, which="probs", k_max=k) p[k - 1] += 1 - p[:k].sum() tchi2 = stats.chisquare(freq, p[:k] * nobs) assert tchi2.pvalue > 0.01 # estimated distribution methods rvs, ppf # frozen distribution with estimated parameters # Todo results method dfr = mod.get_distr(res.params) nobs_rvs = 500 rvs = dfr.rvs(size=nobs_rvs) > freq = np.bincount(rvs) ../.pybuild/cpython3_3.11_statsmodels/build/statsmodels/distributions/tests/test_discrete.py:302: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ args = (array([ 0, 0, 2, 1, 0, 1, 2, 0, 1, 0, 1, 1, 0, 1, 0, 3, 0, 4, 1, 0, 2, 0, 1, 5, 0, 1,... 1, 0, 4, 4, 2, 0, 2, 1, 3, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 3], dtype=int64),) kwargs = {} relevant_args = (array([ 0, 0, 2, 1, 0, 1, 2, 0, 1, 0, 1, 1, 0, 1, 0, 3, 0, 4, 1, 0, 2, 0, 1, 5, 0, 1,... 0, 4, 4, 2, 0, 2, 1, 3, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 3], dtype=int64), None) > ??? E TypeError: Cannot cast array data from dtype('int64') to dtype('int32') according to the rule 'safe' <__array_function__ internals>:200: TypeError ... =========================== short test summary info ============================ FAILED ../.pybuild/cpython3_3.11_statsmodels/build/statsmodels/distributions/tests/test_discrete.py::TestDiscretizedGamma::test_basic FAILED ../.pybuild/cpython3_3.11_statsmodels/build/statsmodels/distributions/tests/test_discrete.py::TestDiscretizedExponential::test_basic FAILED ../.pybuild/cpython3_3.11_statsmodels/build/statsmodels/distributions/tests/test_discrete.py::TestDiscretizedLomax::test_basic FAILED ../.pybuild/cpython3_3.11_statsmodels/build/statsmodels/distributions/tests/test_discrete.py::TestDiscretizedBurr12::test_basic = 4 failed, 16442 passed, 292 skipped, 142 xfailed, 10 xpassed, 307 warnings in 3029.45s (0:50:29) = make[1]: *** [debian/rules:105: override_dh_auto_test] Error 1